by Keyword: catheter
Kasapgil, E, Garay-Sarmiento, M, Rodriguez-Emmenegger, C, (2024). Advanced Antibacterial Strategies for Combatting Biomaterial-Associated Infections: A Comprehensive Review Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e2018
Biomaterial-associated infections (BAIs) pose significant challenges in modern medical technologies, being a major postoperative complication and leading cause of implant failure. These infections significantly risk patient health, resulting in prolonged hospitalization, increased morbidity and mortality rates, and elevated treatment expenses. This comprehensive review examines the mechanisms driving bacterial adhesion and biofilm formation on biomaterial surfaces, offering an in-depth analysis of current antimicrobial strategies for preventing BAIs. We explore antimicrobial-eluting biomaterials, contact-killing surfaces, and antifouling coatings, emphasizing the application of antifouling polymer brushes on medical devices. Recent advancements in multifunctional antimicrobial biomaterials, which integrate multiple mechanisms for superior protection against BAIs, are also discussed. By evaluating the advantages and limitations of these strategies, this review aims to guide the design and development of highly efficient and biocompatible antimicrobial biomaterials. We highlight potential design routes that facilitate the transition from laboratory research to clinical applications. Additionally, we provide insights into the potential of synthetic biology as a novel approach to combat antimicrobial resistance. This review aspires to inspire future research and innovation, ultimately improving patient outcomes and advancing medical device technology.
JTD Keywords: Animals, Anti-bacterial agents, Antifouling coatings, Antimicrobial peptide, Antimicrobial-eluting coatings, Antimicrobial‐eluting coatings, Bacterial adhesion, Bacterial biofilm formation, Biocompatible materials, Biofilms, Biomaterial-associated infections, Biomaterial‐associated infections, Contact killing coatings, Humans, In-vitr, Infused porous surfaces, Metal-oxide surfaces, Multifunctional antimicrobial coating, Multifunctional antimicrobial coatings, Poly(l-lysine)-g-poly(ethylene glycol) layers, Polymer brushes, Prosthesis-related infections, Silicone oil, Superhydrophobic surfaces, Urinary catheters
Bilgin, C, Hutar, J, Li, JH, Castano, O, Ribo, M, Kallmes, DF, (2023). Catheter design primer for neurointerventionalists Journal Of Neurointerventional Surgery 15, 1117-1121
Neurovascular catheter technology has rapidly evolved over the past decade. While performance characteristics are well known to the practitioner, the design features of these new-generation catheters and their implications on performance metrics remain a mystery to most clinicians due to the limited number of available resources. This knowledge gap hampers informed device choices and also limits collaboration between clinicians and engineers. To aid fellow neurointerventionalists, in this primer we have summarized the basic concepts of catheter design and construction.
JTD Keywords: catheter, device, Catheter, Device, Technology
Li, JH, Tomasello, A, Requena, M, Canals, P, Tiberi, R, Galve, I, Engel, E, Kallmes, DF, Castano, O, Ribo, M, (2023). Trackability of distal access catheters: an in vitro quantitative evaluation of navigation strategies Journal Of Neurointerventional Surgery 15, 498-+
Background In mechanical thrombectomy (MT), distal access catheters (DACs) are tracked through the vascular anatomy to reach the occlusion site. The inability of DACs to reach the occlusion site has been reported as a predictor of unsuccessful recanalization. This study aims to provide insight into how to navigate devices through the vascular anatomy with minimal track forces, since higher forces may imply more risk of vascular injuries. Methods We designed an experimental setup to monitor DAC track forces when navigating through an in vitro anatomical model. Experiments were recorded to study mechanical behaviors such as tension buildup against vessel walls, DAC buckling, and abrupt advancements. A multiple regression analysis was performed to predict track forces from the catheters' design specifications. Results DACs were successfully delivered to the target M1 in 60 of 63 in vitro experiments (95.2%). Compared to navigation with unsupported DAC, the concomitant coaxial use of a microcatheter/microguidewire and microcatheter/stent retriever anchoring significantly reduced the track forces by about 63% and 77%, respectively (p<0.01). The presence of the braid pattern in the reinforcement significantly reduced the track forces regardless of the technique used (p<0.05). Combined coil and braid reinforcement configuration, as compared with coil alone, and a thinner distal wall were predictors of lower track force when navigating with unsupported DAC. Conclusions The use of microcatheter and stent retriever facilitate smooth navigation of DACs through the vascular tortuosity to reach the occlusion site, which in turn improves the reliability of tracking when positioning the DAC closer to the thrombus interface.
JTD Keywords: catheter, navigation, stroke, thrombectomy, Catheter, Navigation, Stroke, Thrombectomy, Vessel wall
Li, JH, Castaño, O, Tomasello, A, Lascuevas, MD, Canals, P, Engel, E, Ribo, M, (2022). Catheter tip distensibility substantially influences the aspiration force of thrombectomy devices Journal Of Neurointerventional Surgery 14, 63-67
BackgroundA direct aspiration first pass thrombectomy (ADAPT) is a fast-growing technique for which a broad catalog of catheters that provide a wide range of aspiration forces can be used. We aimed to characterize different catheters' aspiration performance on stiff clots in an in vitro vascular model. We hypothesized that labeled catheter inner diameter (labeled-ID) is not the only parameter that affects the aspiration force (asp-F) and that thrombus–catheter tip interaction and distensibility also play a major role.MethodsWe designed an experimental setup consisting of a 3D-printed carotid artery immersed in a water deposit. We measured asp-F and distensibility of catheter tips when performing ADAPT on a stiff clot analog larger than catheter labeled-ID. Correlations between asp-F, catheter ID, and tip distensibility were statistically assessed.ResultsExperimental asp-F and catheter labeled-ID were correlated (r=0.9601; P<0.01). The relative difference between experimental and theoretical asp-F (obtained by the product of the tip’s section area by the vacuum pressure) correlated with tip’s distensibility (r=0.9050; P<0.01), evidencing that ADAPT performance is highly influenced by catheter tip shape-adaptability to the clot and that the effective ID (eff-ID) may differ from the labeled-ID specified by manufacturers. Eff-ID showed the highest correlation with experimental asp-F (r=0.9944; P<0.01), confirming that eff-ID rather than labeled-ID should be considered to better estimate the device efficiency.ConclusionsCatheter tip distensibility can induce a significant impact on ADAPT performance when retrieving a stiff clot larger than the device ID. Our findings might contribute to optimizing thrombectomy strategies and the design of novel aspiration catheters.
JTD Keywords: catheter, endovascular thrombectomy, intervention, pressure, stroke, technique, thrombectomy, Acute ischemic-stroke, Catheter, Thrombectomy
Li, JH, Castaño, O, Ribo, M, (2022). Response to letter: How much will a catheter tip expand in aspiration thrombectomy? Journal Of Neurointerventional Surgery 14,