DONATE

Publications

by Keyword: controlled delivery

Rial-Hermida, MI, Rey-Rico, A, Blanco-Fernandez, B, Carballo-Pedrares, N, Byrne, EM, Mano, JF, (2021). Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules Acs Biomaterials Science & Engineering 7, 4102-4127

A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields. © 2021 American Chemical Society.

JTD Keywords: biodegradable dextran hydrogels, biotherapeutics, bone morphogenetic protein-2, carrageenan-based hydrogels, chitosan-based hydrogels, controlled delivery, controlled-release, cross-linked hydrogels, growth-factor delivery, hydrogels, in-vitro characterization, polysaccharides, self-healing hydrogel, stimuli-responsiveness, tissue engineering, Antibodies, Bioactivity, Biodegradability, Biomedical fields, Biomolecules, Biotherapeutics, Chemical modification, Circular economy, Controlled delivery, Controlled drug delivery, Delivery systems, Drug delivery system, Functional polymers, Hyaluronic-acid hydrogels, Hydrogels, Industrial processs, Polysaccharides, Recent progress, Renewable sources, Stimuli-responsiveness, Targeted drug delivery, Tissue engineering, Waste management


Puiggalí-Jou, A, Wedepohl, S, Theune, LE, Alemán, C, Calderón, M, (2021). Effect of conducting/thermoresponsive polymer ratio on multitasking nanogels Materials Science & Engineering C-Materials For Biological Applications 119, 111598

© 2020 Elsevier B.V. Semi-interpenetrated nanogels (NGs) able to release and sense diclofenac (DIC) have been designed to act as photothermal agents with the possibility to ablate cancer cells using mild-temperatures (<45 °C). Combining mild heat treatments with simultaneous chemotherapy appears as a very promising therapeutic strategy to avoid heat resistance or damaging the surrounding tissues. Particularly, NGs consisted on a poly(N-isopropylacrylamide) (PNIPAM) and dendritic polyglycerol (dPG) mesh containing a semi-interpenetrating network (SIPN) of poly(hydroxymethyl 3,4-ethylenedioxythiophene) (PHMeEDOT). The PHMeEDOT acted as photothermal and conducting agent, while PNIPAM-dPG NG provided thermoresponsivity and acted as stabilizer. We studied how semi-interpenetration modified the physicochemical characteristics of the thermoresponsive SIPN NGs and selected the best condition to generate a multifunctional photothermal agent. The thermoswitchable conductiveness of the multifunctional NGs and the redox activity of DIC could be utilized for its electrochemical detection. Besides, as proof of the therapeutic concept, we investigated the combinatorial effect of photothermal therapy (PTT) and DIC treatment using the HeLa cancer cell line in vitro. Within 15 min NIR irradiation without surpassing 45 °C we were able to kill 95% of the cells, demonstrating the potential of SIPN NGs as drug carriers, sensors and agents for mild PTT.

JTD Keywords: cells, cellulose, conducting polymers, controlled delivery, diclofenac, efficiency, electrochemical oxidation, electrochemical sensors, nanogels, nanoparticles, photothermal therapy, pnipam, poly(3,4-ethylenedioxythiophene), Conducting polymers, Electrochemical sensors, Nanogels, Photothermal therapy