DONATE

Publications

by Keyword: determines

Loeck, M, Placci, M, Muro, S, (2023). Effect of acid sphingomyelinase deficiency in type A Niemann-Pick disease on the transport of therapeutic nanocarriers across the blood-brain barrier Drug Delivery And Translational Research 13, 3077-3093

ASM deficiency in Niemann-Pick disease type A results in aberrant cellular accumulation of sphingomyelin, neuroinflammation, neurodegeneration, and early death. There is no available treatment because enzyme replacement therapy cannot surmount the blood-brain barrier (BBB). Nanocarriers (NCs) targeted across the BBB via transcytosis might help; yet, whether ASM deficiency alters transcytosis remains poorly characterized. We investigated this using model NCs targeted to intracellular adhesion molecule-1 (ICAM-1), transferrin receptor (TfR), or plasmalemma vesicle-associated protein-1 (PV1) in ASM-normal vs. ASM-deficient BBB models. Disease differentially changed the expression of all three targets, with ICAM-1 becoming the highest. Apical binding and uptake of anti-TfR NCs and anti-PV1 NCs were unaffected by disease, while anti-ICAM-1 NCs had increased apical binding and decreased uptake rate, resulting in unchanged intracellular NCs. Additionally, anti-ICAM-1 NCs underwent basolateral reuptake after transcytosis, whose rate was decreased by disease, as for apical uptake. Consequently, disease increased the effective transcytosis rate for anti-ICAM-1 NCs. Increased transcytosis was also observed for anti-PV1 NCs, while anti-TfR NCs remained unaffected. A fraction of each formulation trafficked to endothelial lysosomes. This was decreased in disease for anti-ICAM-1 NCs and anti-PV1 NCs, agreeing with opposite transcytosis changes, while it increased for anti-TfR NCs. Overall, these variations in receptor expression and NC transport resulted in anti-ICAM-1 NCs displaying the highest absolute transcytosis in the disease condition. Furthermore, these results revealed that ASM deficiency can differently alter these processes depending on the particular target, for which this type of study is key to guide the design of therapeutic NCs.© 2023. Controlled Release Society.

JTD Keywords: asm deficiency, blood-brain barrier, delivery, determines, drug, endocytosis, enzymes, icam-1, lysosomal storage disease, mechanisms, nanoparticles, natural-history, niemann-pick disease type a, pv-1, receptor-mediated transcytosis, trafficking, transferrin receptor, Asm deficiency, Blood-brain barrier, Blood–brain barrier, Drug carriers, Drug nanocarriers, Humans, Icam-1, Icam-1-targeted nanocarriers, Intercellular adhesion molecule-1, Lysosomal storage disease, Niemann-pick disease type a, Niemann-pick disease, type a, Niemann-pick diseases, Pv-1, Receptor-mediated transcytosis, Transferrin receptor


Sheehan, F, Sementa, D, Jain, A, Kumar, M, Tayarani-Najjaran, M, Kroiss, D, Ulijn, RV, (2021). Peptide-Based Supramolecular Systems Chemistry Chemical Reviews 121, 13869-13914

Peptide-based supramolecular systems chemistry seeks to mimic the ability of life forms to use conserved sets of building blocks and chemical reactions to achieve a bewildering array of functions. Building on the design principles for short peptide-based nanomaterials with properties, such as self-assembly, recognition, catalysis, and actuation, are increasingly available. Peptide-based supramolecular systems chemistry is starting to address the far greater challenge of systems-level design to access complex functions that emerge when multiple reactions and interactions are coordinated and integrated. We discuss key features relevant to systems-level design, including regulating supramolecular order and disorder, development of active and adaptive systems by considering kinetic and thermodynamic design aspects and combinatorial dynamic covalent and noncovalent interactions. Finally, we discuss how structural and dynamic design concepts, including preorganization and induced fit, are critical to the ability to develop adaptive materials with adaptive and tunable photonic, electronic, and catalytic properties. Finally, we highlight examples where multiple features are combined, resulting in chemical systems and materials that display adaptive properties that cannot be achieved without this level of integration.

JTD Keywords: aromatic peptide, biological-properties, chemical control, conformational-analysis, electronic transport, mechanical-properties, perylene bisimide, pro-hyp sequences, residues determine, Self-assembling peptide