DONATE

Publications

by Keyword: epigenetics

Alcaraz, J, Ikemori, R, Llorente, A, Díaz-Valdivia, N, Reguart, N, Vizoso, M, (2021). Epigenetic reprogramming of tumor-associated fibroblasts in lung cancer: Therapeutic opportunities Cancers 13, 3782

Lung cancer is the leading cause of cancer-related death worldwide. The desmoplastic stroma of lung cancer and other solid tumors is rich in tumor-associated fibroblasts (TAFs) exhibiting an activated/myofibroblast-like phenotype. There is growing awareness that TAFs support key steps of tumor progression and are epigenetically reprogrammed compared to healthy fibroblasts. Although the mechanisms underlying such epigenetic reprogramming are incompletely understood, there is increasing evidence that they involve interactions with either cancer cells, pro-fibrotic cytokines such as TGF-β, the stiffening of the surrounding extracellular matrix, smoking cigarette particles and other environmental cues. These aberrant interactions elicit a global DNA hypomethylation and a selective transcriptional repression through hypermethylation of the TGF-β transcription factor SMAD3 in lung TAFs. Likewise, similar DNA methylation changes have been reported in TAFs from other cancer types, as well as histone core modifications and altered microRNA expression. In this review we summarize the evidence of the epigenetic reprogramming of TAFs, how this reprogramming contributes to the acquisition and maintenance of a tumor-promoting phenotype, and how it provides novel venues for therapeutic intervention, with a special focus on lung TAFs.

JTD Keywords: cancer-associated fibroblasts, desmoplasia, dna methylation, epigenetics, expression, genomic dna, lung cancer, mechanical memory, myofibroblast differentiation, pulmonary fibroblasts, smoking, stromal fibroblasts, tgf-?, tgf-beta, tgf-β, transforming growth-factor-beta-1, tumor stroma, Cancer-associated fibroblasts, Carcinoma-associated fibroblasts, Desmoplasia, Epigenetics, Lung cancer, Smoking, Tgf-β, Tumor stroma


Vodovotz, Y., Barnard, N., Hu, F. B., Jakicic, J., Lianov, L., Loveland, D., Buysse, D., Szigethy, E., Finkel, T., Sowa, G., Verschure, P., Williams, K., Sanchez, E., Dysinger, W., Maizes, V., Junker, C., Phillips, E., Katz, D., Drant, S., Jackson, R. J., Trasande, L., Woolf, S., Salive, M., South-Paul, J., States, S. L., Roth, L., Fraser, G., Stout, R., Parkinson, M. D., (2020). Prioritized research for the prevention, treatment, and reversal of chronic disease: recommendations from the lifestyle medicine research summit Frontiers in Medicine 7, 585744

Declining life expectancy and increasing all-cause mortality in the United States have been associated with unhealthy behaviors, socioecological factors, and preventable disease. A growing body of basic science, clinical research, and population health evidence points to the benefits of healthy behaviors, environments and policies to maintain health and prevent, treat, and reverse the root causes of common chronic diseases. Similarly, innovations in research methodologies, standards of evidence, emergence of unique study cohorts, and breakthroughs in data analytics and modeling create new possibilities for producing biomedical knowledge and clinical translation. To understand these advances and inform future directions research, The Lifestyle Medicine Research Summit was convened at the University of Pittsburgh on December 4–5, 2019. The Summit's goal was to review current status and define research priorities in the six core areas of lifestyle medicine: plant-predominant nutrition, physical activity, sleep, stress, addictive behaviors, and positive psychology/social connection. Forty invited subject matter experts (1) reviewed existing knowledge and gaps relating lifestyle behaviors to common chronic diseases, such as cardiovascular disease, diabetes, many cancers, inflammatory- and immune-related disorders and other conditions; and (2) discussed the potential for applying cutting-edge molecular, cellular, epigenetic and emerging science knowledge and computational methodologies, research designs, and study cohorts to accelerate clinical applications across all six domains of lifestyle medicine. Notably, federal health agencies, such as the Department of Defense and Veterans Administration have begun to adopt “whole-person health and performance” models that address these lifestyle and environmental root causes of chronic disease and associated morbidity, mortality, and cost. Recommendations strongly support leveraging emerging research methodologies, systems biology, and computational modeling in order to accelerate effective clinical and population solutions to improve health and reduce societal costs. New and alternative hierarchies of evidence are also be needed in order to assess the quality of evidence and develop evidence-based guidelines on lifestyle medicine. Children and underserved populations were identified as prioritized groups to study. The COVID-19 pandemic, which disproportionately impacts people with chronic diseases that are amenable to effective lifestyle medicine interventions, makes the Summit's findings and recommendations for future research particularly timely and relevant.

JTD Keywords: Chronic disease, Epigenetics, In silico modeling, Inflammation, Lifestyle medicine, Nutrition, Physical activity, Research methodologies