DONATE

Publications

by Keyword: excitability

Pavlova, EL, Semenov, RV, Pavlova-Deb, MP, Guekht, AB, (2022). Transcranial direct current stimulation of the premotor cortex aimed to improve hand motor function in chronic stroke patients Brain Research 1780, 147790

Objective: To investigate the effects of single-session premotor and primary motor tDCS in chronic stroke patients with relation to possible inter-hemispheric interactions. Methods: Anodal tDCS of either M1 or premotor cortex of the side contralateral to the paretic hand, cathodal tDCS of the premotor cortex of the side ipsilateral to the paretic hand and sham stimulation were performed in 12 chronic stroke patients with mild hand paresis in a balanced cross-over design. The Jebsen-Taylor Hand Function test, evaluating the time required for performance of everyday motor tasks, was employed. Results: The repeated-measure ANOVA with Greenhouse-Geisser correction showed significant influence of the stimulation type (factor SESSION; F(2.6, 28.4) = 47.3, p < 0.001), the test performance time relative to stimulation (during or after tDCS; factor TIME, F(1.0, 11.0) = 234.5, p < 0.001) with higher effect after the stimulation and the interaction SESSION*TIME (F(1.7, 1.2) = 30.5, p < 0.001). All active conditions were effective for the modulation of JTT performance, though the highest effect was observed after anodal tDCS of M1, followed by effects after anodal stimulation of the premotor cortex contralateral to the paretic hand. Based on the correlation patterns, the inhibitory input to M1 from premotor cortex of another hemisphere and an excitatory input from the ipsilesional premotor cortex were suggested. Conclusion: The premotor cortex is a promising candidate area for transcranial non-invasive stimulation of chronic stroke patients. © 2022 The Author(s)

JTD Keywords: areas, contralateral primary motor, dorsal premotor, excitability, jtt, lateral premotor, object manipulation, premotor cortex, recovery, stroke, tdcs, time-course, transcranial direct current stimulation, Jtt, Noninvasive brain-stimulation, Premotor cortex, Stroke, Tdcs, Transcranial direct current stimulation


dos Santos, FP, Verschure, PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544

Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.

JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex