DONATE

Publications

by Keyword: extracellular calcium

Lopez-Canosa, A, Perez-Amodio, S, Engel, E, Castano, O, (2022). Microfluidic 3D Platform to Evaluate Endothelial Progenitor Cell Recruitment by Bioactive Materials Acta Biomaterialia 151, 264-277

Most of the conventional in vitro models to test biomaterial-driven vascularization are too simplistic to recapitulate the complex interactions taking place in the actual cell microenvironment, which results in a poor prediction of the in vivo performance of the material. However, during the last decade, cell culture models based on microfluidic technology have allowed attaining unprecedented levels of tissue biomimicry. In this work, we propose a microfluidic-based 3D model to evaluate the effect of bioactive biomaterials capable of releasing signalling cues (such as ions or proteins) in the recruitment of endogenous endothelial progenitor cells, a key step in the vascularization process. The usability of the platform is demonstrated using experimentally-validated finite element models and migration and proliferation studies with rat endothelial progenitor cells (rEPCs) and bone marrow-derived rat mesenchymal stromal cells (BM-rMSCs). As a proof of concept of biomaterial evaluation, the response of rEPCs to an electrospun composite made of polylactic acid with calcium phosphates nanoparticles (PLA+CaP) was compared in a co-culture microenvironment with BM-rMSC to a regular PLA control. Our results show a significantly higher rEPCs migration and the upregulation of several pro-inflammatory and proangiogenic proteins in the case of the PLA+CaP. The effects of osteopontin (OPN) on the rEPCs migratory response were also studied using this platform, suggesting its important role in mediating their recruitment to a calcium-rich microenvironment. This new tool could be applied to screen the capacity of a variety of bioactive scaffolds to induce vascularization and accelerate the preclinical testing of biomaterials. STATEMENT OF SIGNIFICANCE: : For many years researchers have used neovascularization models to evaluate bioactive biomaterials both in vitro, with low predictive results due to their poor biomimicry and minimal control over cell cues such as spatiotemporal biomolecule signaling, and in vivo models, presenting drawbacks such as being highly costly, time-consuming, poor human extrapolation, and ethically controversial. We describe a compact microphysiological platform designed for the evaluation of proangiogenesis in biomaterials through the quantification of the level of sprouting in a mimicked endothelium able to react to gradients of biomaterial-released signals in a fibrin-based extracellular matrix. This model is a useful tool to perform preclinical trustworthy studies in tissue regeneration and to better understand the different elements involved in the complex process of vascularization.Copyright © 2022. Published by Elsevier Ltd.

JTD Keywords: angiogenesis, bioactive materials, bone regeneration, bone-formation, calcium-phosphate, extracellular calcium, in-vitro, interstitial flow, ion release, microfluidic model, signalling gradient, substitutes, tissue engineering, vascularization, vegf, Ion release, Mesenchymal stem-cells, Tissue engineering, Vascularization


Bohner, M, Maazouz, Y, Ginebra, MP, Habibovic, P, Schoenecker, JG, Seeherman, H, van den Beucken, JJJP, Witte, F, (2022). Sustained local ionic homeostatic imbalance caused by calcification modulates inflammation to trigger heterotopic ossification Acta Biomaterialia 145, 1-24

Heterotopic ossification (HO) is a condition triggered by an injury leading to the formation of mature lamellar bone in extraskeletal soft tissues. Despite being a frequent complication of orthopedic and trauma surgery, brain and spinal injury, the etiology of HO is poorly understood. The aim of this study is to evaluate the hypothesis that a sustained local ionic homeostatic imbalance (SLIHI) created by mineral formation during tissue calcification modulates inflammation to trigger HO. This evaluation also considers the role SLIHI could play for the design of cell-free, drug-free osteoinductive bone graft substitutes. The evaluation contains five main sections. The first section defines relevant concepts in the context of HO and provides a summary of proposed causes of HO. The second section starts with a detailed analysis of the occurrence and involvement of calcification in HO. It is followed by an explanation of the causes of calcification and its consequences. This allows to speculate on the potential chemical modulators of inflammation and triggers of HO. The end of this second section is devoted to in vitro mineralization tests used to predict the ectopic potential of materials. The third section reviews the biological cascade of events occurring during pathological and material-induced HO, and attempts to propose a quantitative timeline of HO formation. The fourth section looks at potential ways to control HO formation, either acting on SLIHI or on inflammation. Chemical, physical, and drug-based approaches are considered. Finally, the evaluation finishes with a critical assessment of the definition of osteoinduction.

JTD Keywords: apatite, beta-tricalcium phosphate, bone, bone graft, bone morphogenetic protein, demineralized bone-matrix, experimental myositis-ossificans, extracellular calcium, heterotopic ossification, in-vitro, inflammation, multinucleated giant-cells, osteoinduction, spinal-cord-injury, total hip-arthroplasty, traumatic brain-injury, Apatite, Calcium-sensing receptor, Osteoinduction


González-Vázquez, A., Planell, J. A., Engel, E., (2014). Extracellular calcium and CaSR drive osteoinduction in mesenchymal stromal cells Acta Biomaterialia 10, (6), 2824–2833

Bone is the main store of calcium and progenitor cells in the body. During the resorption process, the local calcium concentration reaches 8-40 mM, and the surrounding cells are exposed to these fluctuations in calcium. This stimulus is a signal that is detected through the calcium sensing receptor (CaSR), which modulates chemotactic and proliferative G protein-dependent signaling pathways. The objective of the present work is to evaluate the roles of extracellular calcium ([Ca2+]o) and the CaSR in osteoinduction. Rat bone marrow mesenchymal stromal cells (rBMSCs) were stimulated with 10 mM of Ca2+. Several experiments were conducted to demonstrate the effect of [Ca2+]o on chemotaxis, proliferation and differentiation on the osteoblastic lineage. It was found that [Ca2+]o induces rBMSCs to migrate and proliferate in a concentration-dependent manner. Real-time polymerase chain reaction and immunofluorescence also revealed that 10 mM Ca2+ stimulates overexpression of osteogenic markers in rBMSCs, including alkaline phosphatase (ALP), bone sialoprotein, collagen Ia1 and osteocalcin. Functional assays determining ALP activity and mineralization tests both corroborate the increased expression of these markers in rBMSCs stimulated with Ca2+. Moreover, CaSR blockage inhibited the cellular response to stimulation with high concentrations of [Ca2+]o, revealing that the CaSR is a key modulator of these cellular responses.

JTD Keywords: Calcium sensing receptor (CaSR), Extracellular calcium, Mesenchymal stromal cells (MSCs), Osteoinduction, Regenerative medicine