DONATE

Publications

by Keyword: functional recovery

Smith, CS, Alvarez, Z, Qiu, RM, Sasselli, IR, Clemons, T, Ortega, JA, Vilela-Picos, M, Wellman, H, Kiskinis, E, Stupp, SI, (2023). Enhanced Neuron Growth and Electrical Activity by a Supramolecular Netrin-1 Mimetic Nanofiber Acs Nano 17, 19887-19902

Neurotrophic factors are essential not only for guiding the organization of the developing nervous system but also for supporting the survival and growth of neurons after traumatic injury. In the central nervous system (CNS), inhibitory factors and the formation of a glial scar after injury hinder the functional recovery of neurons, requiring exogenous therapies to promote regeneration. Netrin-1, a neurotrophic factor, can initiate axon guidance, outgrowth, and branching, as well as synaptogenesis, through activation of deleted in colorectal cancer (DCC) receptors. We report here the development of a nanofiber-shaped supramolecular mimetic of netrin-1 with monomers that incorporate a cyclic peptide sequence as the bioactive component. The mimetic structure was found to activate the DCC receptor in primary cortical neurons using low molar ratios of the bioactive comonomer. The supramolecular nanofibers enhanced neurite outgrowth and upregulated maturation as well as pre- and postsynaptic markers over time, resulting in differences in electrical activity similar to neurons treated with the recombinant netrin-1 protein. The results suggest the possibility of using the supramolecular structure as a therapeutic to promote regenerative bioactivity in CNS injuries.

JTD Keywords: axon growth, axon guidance, cell-migration, colorectal-cancer, dcc, dopaminergic-neurons, force-field, functional recovery, netrin-1, neurite outgrowth, neuronal maturation, neurotrophic factor, neurotrophicfactor mimetic, synapsis, Axon growth, Axons, Cells, cultured, Central nervous system, Coarse-grained model, Nanofibers, Netrin-1, Neurogenesis, Neuronal maturation, Neurons, Neurotrophic factor mimetic, Peptide amphiphile, Synapsis


Mesquida-Veny, F, Martínez-Torres, S, Del Río, JA, Hervera, A, (2022). Genetic control of neuronal activity enhances axonal growth only on permissive substrates Molecular Medicine 28, 97

Abstract Background Neural tissue has limited regenerative ability. To cope with that, in recent years a diverse set of novel tools has been used to tailor neurostimulation therapies and promote functional regeneration after axonal injuries. Method In this report, we explore cell-specific methods to modulate neuronal activity, including opto- and chemogenetics to assess the effect of specific neuronal stimulation in the promotion of axonal regeneration after injury. Results Opto- and chemogenetic stimulations of neuronal activity elicited increased in vitro neurite outgrowth in both sensory and cortical neurons, as well as in vivo regeneration in the sciatic nerve, but not after spinal cord injury. Mechanistically, inhibitory substrates such as chondroitin sulfate proteoglycans block the activity induced increase in axonal growth. Conclusions We found that genetic modulations of neuronal activity on both dorsal root ganglia and corticospinal motor neurons increase their axonal growth capacity but only on permissive environments.

JTD Keywords: activation, chemogenetics, electrical-stimulation, expression, functional recovery, increases, injury, motor cortex, neuronal activity, optogenetics, permissive substrate, promotes recovery, regeneration, Optogenetics, Regeneration, Spinal-cord


Mura, A, Maier, M, Ballester, BR, Costa, JD, Lopez-Luque, J, Gelineau, A, Mandigout, S, Ghatan, PH, Fiorillo, R, Antenucci, F, Coolen, T, Chivite, I, Callen, A, Landais, H, Gomez, OI, Melero, C, Brandi, S, Domenech, M, Daviet, JC, Zucca, R, Verschure, PFMJ, (2022). Bringing rehabilitation home with an e-health platform to treat stroke patients: study protocol of a randomized clinical trial (RGS@home) Trials 23, 518

Background: There is a pressing need for scalable healthcare solutions and a shift in the rehabilitation paradigm from hospitals to homes to tackle the increase in stroke incidence while reducing the practical and economic burden for patients, hospitals, and society. Digital health technologies can contribute to addressing this challenge; however, little is known about their effectiveness in at-home settings. In response, we have designed the RGS@home study to investigate the effectiveness, acceptance, and cost of a deep tech solution called the Rehabilitation Gaming System (RGS). RGS is a cloud-based system for delivering Al-enhanced rehabilitation using virtual reality, motion capture, and wearables that can be used in the hospital and at home. The core principles of the brain theory-based RGS intervention are to deliver rehabilitation exercises in the form of embodied, goal-oriented, and task-specific action.; Methods: The RGS@home study is a randomized longitudinal clinical trial designed to assess whether the combination of the RGS intervention with standard care is superior to standard care alone for the functional recovery of stroke patients at the hospital and at home. The study is conducted in collaboration with hospitals in Spain, Sweden, and France and includes inpatients and outpatients at subacute and chronic stages post-stroke. The intervention duration is 3 months with assessment at baseline and after 3, 6, and 12 months. The impact of RGS is evaluated in terms of quality of life measurements, usability, and acceptance using standardized clinical scales, together with health economic analysis. So far, one-third of the patients expected to participate in the study have been recruited (N = 90, mean age 60, days after stroke >= 30 days). The trial will end in July 2023.; Discussion: We predict an improvement in the patients' recovery, high acceptance, and reduced costs due to a soft landing from the clinic to home rehabilitation. In addition, the data provided will allow us to assess whether the prescription of therapy at home can counteract deterioration and improve quality of life while also identifying new standards for online and remote assessment, diagnostics, and intervention across European hospitals.

JTD Keywords: deep tech, e-health, home treatment, motor recovery, randomized clinical trial, stroke, upper extremities, virtual reality, Deep tech, E-health, Functional recovery, Home treatment, Motor recovery, Randomized clinical trial, Stroke, Upper extremities, Virtual reality, Wearables