by Keyword: human-robot interaction
Engel, AK, Verschure, PFMJ, Kragic, D, Polani, D, Effenberg, AO, Konig, P, (2022). Editorial: Sensorimotor Foundations of Social Cognition Frontiers In Human Neuroscience 16, 971133-971133
Guerrero, O., Verschure, P., (2020). Distributed adaptive control: An ideal cognitive architecture candidate for managing a robotic recycling plant Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020 (Lecture Notes in Computer Science) , Springer International Publishing (Freiburg, Germany) 12413, 153-164
In the past decade, society has experienced notable growth in a variety of technological areas. However, the Fourth Industrial Revolution has not been embraced yet. Industry 4.0 imposes several challenges which include the necessity of new architectural models to tackle the uncertainty that open environments represent to cyber-physical systems (CPS). Waste Electrical and Electronic Equipment (WEEE) recycling plants stand for one of such open environments. Here, CPSs must work harmoniously in a changing environment, interacting with similar and not so similar CPSs, and adaptively collaborating with human workers. In this paper, we support the Distributed Adaptive Control (DAC) theory as a suitable Cognitive Architecture for managing a recycling plant. Specifically, a recursive implementation of DAC (between both single-agent and large-scale levels) is proposed to meet the expected demands of the European Project HR-Recycler. Additionally, with the aim of having a realistic benchmark for future implementations of the recursive DAC, a micro-recycling plant prototype is presented.
JTD Keywords: Cognitive architecture, Distributed Adaptive Control, Recycling plant, Navigation, Motor control, Human-Robot Interaction
Freire, Ismael T., Urikh, D., Arsiwalla, X. D., Verschure, P., (2020). Machine morality: From harm-avoidance to human-robot cooperation Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020 (Lecture Notes in Computer Science) , Springer International Publishing (Freiburg, Germany) 12413, 116-127
We present a new computational framework for modeling moral decision-making in artificial agents based on the notion of ‘Machine Morality as Cooperation’. This framework integrates recent advances from cross-disciplinary moral decision-making literature into a single architecture. We build upon previous work outlining cognitive elements that an artificial agent would need for exhibiting latent morality, and we extend it by providing a computational realization of the cognitive architecture of such an agent. Our work has implications for cognitive and social robotics. Recent studies in human neuroimaging have pointed to three different decision-making processes, Pavlovian, model-free and model-based, that are defined by distinct neural substrates in the brain. Here, we describe how computational models of these three cognitive processes can be implemented in a single cognitive architecture by using the distributed and hierarchical organization proposed by the DAC theoretical framework. Moreover, we propose that a pro-social drive to cooperate exists at the Pavlovian level that can also bias the rest of the decision system, thus extending current state-of-the-art descriptive models based on harm-aversion.
JTD Keywords: Morality, Moral decision-making, Computational models, Cognitive architectures, Cognitive robotics, Human-robot interaction
Vouloutsi, V., Chesson, A., Blancas, M., Guerrero, O., Verschure, P., (2020). The use of social sensorimotor contingencies in humanoid robots Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020 (Lecture Notes in Computer Science) , Springer International Publishing (Freiburg, Germany) 12413, 378-389
This pilot study investigates the role of social sensorimotor contingencies as exhibited from a humanoid robot to allow mutual understanding and social entrainment in a group social activity. The goal is to evaluate whether sensorimotor contingencies can lead to transparent and understandable interactions while we explore the dimension of personality. We propose the task of taking a selfie with a robot and a group of humans as the benchmark to evaluate the social sensorimotor contingencies displayed. We have constructed two models of interaction with an introverted and extroverted robot. We also seek to address the gap in research in context and personality of social sensorimotor contingencies in HRI and contribute to the field of personality in social robotics by determining what type of behaviour of the robot attracts certain personalities in humans in group settings. Although the sample size was small, and there were no significant differences between conditions, results suggest that the expression of sensorimotor contingencies can lead to successful coupling and interactions.
JTD Keywords: Human-robot interaction, Personality, Social robots, Social sensorimotor contingencies
Vouloutsi, Vasiliki, Mura, Anna, Tauber, F., Speck, T., Prescott, T. J., Verschure, P., (2020). Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings , Springer, Cham (Lausanne, Switzerland) 12413, 1-428
This book constitutes the proceedings of the )th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2020, held in Freiburg, Germany, in July 2020. Due to COVID-19 pandemic the conference was held virtually. The 32 full and 7 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.
JTD Keywords: Artificial intelligence, Soft robotics, Biomimetics, Insect navigation, Synthetic nervous system, Computer vision, Bio-inspired materials, Visual homing, Locomotion+, Image processing, Intelligent robots, Human-robot interaction, Machine learning, Snake robot, Mobile robots, Robotic systems, Drosophila, Robots, Sensors, Signal processing
Vouloutsi, V., Grechuta, K., Verschure, P., (2019). Evaluation of the facial expressions of a humanoid robot Biomimetic and Biohybrid Systems 8th International Conference, Living Machines 2019 (Lecture Notes in Computer Science) , Springer International Publishing (Nara, Japan) 11556, 365-368
Facial expressions are salient social features that crucial in communication, and humans are capable of reading the messages faces convey and the emotions they display. Robots that interact with humans will need to employ similar communication channels for successful interactions. Here, we focus on the readability of the facial expressions of a humanoid robot. We conducted an online survey where participants evaluated emotional stimuli and assessed the robot’s expressions. Results suggest that the robot’s facial expressions are correctly recognised and the appraisal of the robots expressive elements are consistent with the literature.
JTD Keywords: Emotion recognition, Facial expressions, Human-robot interaction
Fischer, Tobias, Puigbò, Jordi-Ysard, Camilleri, Daniel, Nguyen, Phuong D. H., Moulin-Frier, Clément, Lallée, Stéphane, Metta, Giorgio, Prescott, Tony J., Demiris, Yiannis, Verschure, P., (2018). iCub-HRI: A software framework for complex human-robot interaction scenarios on the iCub humanoid robot Frontiers in Robotics and AI , 5, (22), Article 22
Generating complex, human-like behaviour in a humanoid robot like the iCub requires the integration of a wide range of open source components and a scalable cognitive architecture. Hence, we present the iCub-HRI library which provides convenience wrappers for components related to perception (object recognition, agent tracking, speech recognition, touch detection), object manipulation (basic and complex motor actions) and social interaction (speech synthesis, joint attention) exposed as a C++ library with bindings for Java (allowing to use iCub-HRI within Matlab) and Python. In addition to previously integrated components, the library allows for simple extension to new components and rapid prototyping by adapting to changes in interfaces between components. We also provide a set of modules which make use of the library, such as a high-level knowledge acquisition module and an action recognition module. The proposed architecture has been successfully employed for a complex human-robot interaction scenario involving the acquisition of language capabilities, execution of goal-oriented behaviour and expression of a verbal narrative of the robot's experience in the world. Accompanying this paper is a tutorial which allows a subset of this interaction to be reproduced. The architecture is aimed at researchers familiarising themselves with the iCub ecosystem, as well as expert users, and we expect the library to be widely used in the iCub community.
JTD Keywords: Robotics, iCub Humanoid, YARP, Software architecture, C++, Python, Java, Human-robot interaction
Moulin-Frier, C., Fischer, T., Petit, M., Pointeau, G., Puigbo, J., Pattacini, U., Low, S. C., Camilleri, D., Nguyen, P., Hoffmann, M., Chang, H. J., Zambelli, M., Mealier, A., Damianou, A., Metta, G., Prescott, T. J., Demiris, Y., Dominey, P. F., Verschure, P. F. M. J., (2018). DAC-h3: A proactive robot cognitive architecture to acquire and express knowledge about the world and the self IEEE Transactions on Cognitive and Developmental Systems 10, (4), 1005-1022
This paper introduces a cognitive architecture for a humanoid robot to engage in a proactive, mixed-initiative exploration and manipulation of its environment, where the initiative can originate from both the human and the robot. The framework, based on a biologically-grounded theory of the brain and mind, integrates a reactive interaction engine, a number of state-of-the art perceptual and motor learning algorithms, as well as planning abilities and an autobiographical memory. The architecture as a whole drives the robot behavior to solve the symbol grounding problem, acquire language capabilities, execute goal-oriented behavior, and express a verbal narrative of its own experience in the world. We validate our approach in human-robot interaction experiments with the iCub humanoid robot, showing that the proposed cognitive architecture can be applied in real time within a realistic scenario and that it can be used with naive users.
JTD Keywords: Autobiographical Memory., Biology, Cognition, Cognitive Robotics, Computer architecture, Distributed Adaptive Control, Grounding, Human-Robot Interaction, Humanoid robots, Robot sensing systems, Symbol Grounding
Vinagre, M., Aranda, J., Casals, A., (2014). An interactive robotic system for human assistance in domestic environments Computers Helping People with Special Needs (ed. Miesenberger, K., Fels, D., Archambault, D., Pe, Zagler), Springer International Publishing 8548, 152-155
This work introduces an interactive robotic system for assistance, conceived to tackle some of the challenges that domestic environments impose. The system is organized into a network of heterogeneous components that share both physical and logical functions to perform complex tasks. It consists of several robots for object manipulation, an advanced vision system that supplies in-formation about objects in the scene and human activity, and a spatial augmented reality interface that constitutes a comfortable means for interacting with the system. A first analysis based on users' experiences confirms the importance of having a friendly user interface. The inclusion of context awareness from visual perception enriches this interface allowing the robotic system to become a flexible and proactive assistant.
JTD Keywords: Accessibility, Activity Recognition, Ambient Intelligence, Human-Robot Interaction, Robot Assistance, Augmented reality, Complex networks, Computer vision, User interfaces, Accessibility, Activity recognition, Ambient intelligence, Domestic environments, Heterogeneous component, Interactive robotics, Robot assistance, Spatial augmented realities, Human assistance, Robotics
Hernansanz, A., Zerbato, D., Gasperotti, L., Scandola, M., Casals, A., Fiorini, P., (2012). Assessment of virtual fixtures for the development of basic skills in robotic surgery International Journal of Computer Assisted Radiology and Surgery CARS 2012 Computer Assisted Radiology and Surgery , Springer (Pisa, Italy) 7 (Supplement 1) - Surgical Modelling, Simulation and Education, S186-S188
Teleoperation, by adequately adapting computer interfaces, can benefit from the knowledge on human factors and psychomotor models in order to improve the effectiveness and efficiency in the execution of a task. While scaling is one of the performances frequently used in teleoperation tasks that require high precision, such as surgery, this article presents a scaling method that considers the system dynamics as well. The proposed dynamic scaling factor depends on the apparent position and velocity of the robot and targets. Such scaling improves the performance of teleoperation interfaces, thereby reducing user's workload.
JTD Keywords: Human-robot interaction, Throughput, Scaling functions, Motor control performance
Muñoz, L. M., Casals, A., (2012). Dynamic scaling interface for assisted teleoperation IEEE International Conference on Robotics and Automation (ICRA) , IEEE (Minnesota, USA) , 4288-4293
Teleoperation, by adequately adapting computer interfaces, can benefit from the knowledge on human factors and psychomotor models in order to improve the effectiveness and efficiency in the execution of a task. While scaling is one of the performances frequently used in teleoperation tasks that require high precision, such as surgery, this article presents a scaling method that considers the system dynamics as well. The proposed dynamic scaling factor depends on the apparent position and velocity of the robot and targets. Such scaling improves the performance of teleoperation interfaces, thereby reducing user's workload.
JTD Keywords: Human-robot interaction, Motor control performance, Scaling functions, Throughput
Andonovski, B., Ponsa, P., Casals, A., (2010). Towards the development of a haptics guideline in human-robot systems 3rd International Conference on Human System Interactions (HSI) 3rd International Conference on Human System Interactions (HSI) (ed. Pardela, T.), IEEE (Rzeszow, Poland) , 380-387
The main goal of this work is to propose a haptics guideline in human-robot systems focused on the relationship between the human and robot task, the use of a physical interface and the object to manipulate. With this aim, this guideline presents two main parts: a set of heuristic indicators and a qualitative evaluation. In order to assess its ergonomic validation, an application over a well known haptics interface is presented. The final goal of this work is the study of possible applications in regular laboratory conditions in order to improve the design and use of human-robot haptic interfaces in telerobotics applications.
JTD Keywords: Haptic interface design, Human-robot interaction, Surgical applications, Teleoperation
Munoz, L. M., Casals, A., (2009). Improving the human-robot interface through adaptive multispace transformation IEEE Transactions on Robotics , 25, (5), 1208-1213
Teleoperation is essential for applications in which, despite the availability of a precise geometrical definition of the working area, a task cannot be explicitly programmed. This paper describes a method of assisted teleoperation that improves the execution of such tasks in terms of ergonomics, precision, and reduction of execution time. The relationships between the operating spaces corresponding to the human-robot interface triangle are analyzed. The proposed teleoperation aid is based on applying adaptive transformations between these spaces.
JTD Keywords: Human factors, Human-robot interaction, Teleoperation