by Keyword: outcomes
Gomez, Silvia Gonzalez, Ginebra, Maria-Pau, Gil, Francisco Javier, Barraquer, Rafael I, Manero, Jose Maria, (2024). Antibacterial and cytocompatible silver coating for titanium Boston Keratoprosthesis Frontiers In Bioengineering And Biotechnology 12, 1421706
The Boston Keratoprosthesis (BKPro) serves as a medical solution for restoring vision in complex cases of corneal blindness. Comprising a front plate made of polymethylmethacrylate (PMMA) and a back plate of titanium (Ti), this device utilizes the beneficial biomaterial properties of Ti. While BKPro demonstrates promising retention rates, infection emerges as a significant concern that impacts its long-term efficacy. However, limited research exists on enhancement of BKPros through intrinsic infection-preventing mechanisms. In this regard, metal ions, especially the well-known Ag+ ions, are a promising alternative to obtain implants with innate antibacterial properties. However, little information is available about the effects of Ag in corneal tissue, especially within human corneal keratocytes (HCKs). In this work, an electrodeposition treatment using a constant pulse is proposed to attach Ag complexes onto rough Ti surfaces, thus providing antibacterial properties without inducing cytotoxicity. Complete physicochemical characterization and ion release studies were carried out with both control and Ag-treated samples. The possible cytotoxic effects in the short and long term were evaluated in vitro with HCKs. Moreover, the antibacterial properties of the silver-treated surfaces were tested against the gram-negative bacterial strain Pseudomonas aeruginosa and the gram-positive strain Staphylococcus epidermidis, that are common contributors to infections in BKPros. Physicochemical characterization confirmed the presence of silver, predominantly in oxide form, with low release of Ag+ ions. Ag-treated surfaces demonstrated no cytotoxicity and promoted long-term proliferation of HCKs. Furthermore, the silver-treated surfaces exhibited a potent antibacterial effect, causing a reduction in bacterial adhesion and evident damage to the bacterial cell walls of P. aeruginosa and S. epidermidis. The low release of Ag+ ions suggested reactive oxygen species (ROS)-mediated oxidative stress imbalance as the bactericidal mechanism of the silver deposits. In conclusion, the proposed electrodeposition technique confers antibacterial protection to the Ti backplate of BKPro, mitigating implant-threatening infections while ensuring non-cytotoxicity within the corneal tissue.
JTD Keywords: Antibacterial properties, Biofilm, Boston keratoprosthesis (bkpro), Corneal blindness, Cytotoxicicity, Cytotoxicit, Electrodeposition, I keratoprosthesis, Infection, Infectious endophthalmitis, Ion, Long-term outcomes, Nanoparticles, Silver depositio, Surface, Titanium (ti)
Velasco, P, Bautista, F, Rubio, A, Aguilar, Y, Rives, S, Dapena, JL, Pérez, A, Ramirez, M, Saiz-Ladera, C, Izquierdo, E, Escudero, A, Camós, M, Vega-Garcia, N, Ortega, M, Hidalgo-Gomez, G, Palacio, C, Menéndez, P, Bueno, C, Montero, J, Romecín, PA, Zazo, S, Alvarez, F, Parras, J, Ortega-Sabater, C, Chulián, S, Rosa, M, Cirillo, D, García, E, García, J, Manzano-Muñoz, A, Minguela, A, Fuster, JL, (2023). The relapsed acute lymphoblastic leukemia network (ReALLNet): a multidisciplinary project from the spanish society of pediatric hematology and oncology (SEHOP) Frontiers In Pediatrics 11, 1269560
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer, with survival rates exceeding 85%. However, 15% of patients will relapse; consequently, their survival rates decrease to below 50%. Therefore, several research and innovation studies are focusing on pediatric relapsed or refractory ALL (R/R ALL). Driven by this context and following the European strategic plan to implement precision medicine equitably, the Relapsed ALL Network (ReALLNet) was launched under the umbrella of SEHOP in 2021, aiming to connect bedside patient care with expert groups in R/R ALL in an interdisciplinary and multicentric network. To achieve this objective, a board consisting of experts in diagnosis, management, preclinical research, and clinical trials has been established. The requirements of treatment centers have been evaluated, and the available oncogenomic and functional study resources have been assessed and organized. A shipping platform has been developed to process samples requiring study derivation, and an integrated diagnostic committee has been established to report results. These biological data, as well as patient outcomes, are collected in a national registry. Additionally, samples from all patients are stored in a biobank. This comprehensive repository of data and samples is expected to foster an environment where preclinical researchers and data scientists can seek to meet the complex needs of this challenging population. This proof of concept aims to demonstrate that a network-based organization, such as that embodied by ReALLNet, provides the ideal niche for the equitable and efficient implementation of "what's next" in the management of children with R/R ALL.© 2023 Velasco, Bautista, Rubio, Aguilar, Rives, Dapena, Pérez, Ramirez, Saiz-Ladera, Izquierdo, Escudero, Camós, Vega-Garcia, Ortega, Hidalgo-Gómez, Palacio, Menéndez, Bueno, Montero, Romecín, Zazo, Alvarez, Parras, Ortega-Sabater, Chulián, Rosa, Cirillo, García, García, Manzano-Muñoz, Minguela and Fuster.
JTD Keywords: artificial intelligence, cancer registry, children, discovery, functional assay, outcomes, precision medicine, risk-factors, Artificial intelligence, B-cell precursor, Cancer registry, Functional assay, Precision medicine, Relapsed acute lymphoblastic leukemia