DONATE

Publications

by Keyword: peri -implant infection

Pizarek, JA, Fischer, NG, Aparicio, C, (2023). Immunomodulatory IL-23 receptor antagonist peptide nanocoatings for implant soft tissue healing Dental Materials 39, 204-216

Peri-implantitis, caused by an inflammatory response to pathogens, is the leading cause of dental implant failure. Poor soft tissue healing surrounding implants - caused by inadequate surface properties - leads to infection, inflammation, and dysregulated keratinocyte and macrophage function. One activated inflammatory response, active around peri-implantitis compared to healthy sites, is the IL-23/IL-17A cytokine axis. Implant surfaces can be synthesized with peptide nanocoatings to present immunomodulatory motifs to target peri-implant keratinocytes to control macrophage polarization and regulate inflammatory axises toward enhancing soft tissue healing.We synthesized an IL-23 receptor (IL-23R) noncompetitive antagonist peptide nanocoating using silanization and evaluated keratinocyte secretome changes and macrophage polarization (M1-like "pro-inflammatory" vs. M2-like "pro-regenerative").IL-23R antagonist peptide nanocoatings were successfully synthesized on titanium, to model dental implant surfaces, and compared to nonfunctional nanocoatings and non-coated titanium. IL-23R antagonist nanocoatings significantly decreased keratinocyte IL-23, and downstream IL-17A, expression compared to controls. This peptide noncompetitive antagonistic function was demonstrated under lipopolysaccharide stimulation. Large scale changes in keratinocyte secretome content, toward a pro-regenerative milieu, were observed from keratinocytes cultured on the IL-23R antagonist nanocoatings compared to controls. Conditioned medium collected from keratinocytes cultured on the IL-23R antagonist nanocoatings polarized macrophages toward a M2-like phenotype, based on increased CD163 and CD206 expression and reduced iNOS expression, compared to controls.Our results support development of IL-23R noncompetitive antagonist nanocoatings to reduce the pro-inflammatory IL-23/17A pathway and augment macrophage polarization toward a pro-regenerative phenotype. Immunomodulatory implant surface engineering may promote soft tissue healing and thereby reduce rates of peri-implantitis.Copyright © 2023 Elsevier Inc. All rights reserved.

JTD Keywords: agents, alter, bioactivity, cells, dental implant, growth, keratinocyte, macrophage, peptide, peri -implant infection, peri-implant infection, Surface chemistry, Titanium