DONATE

Publications

by Keyword: phase field

Ferre-Torres, J, Noguera-Monteagudo, A, Lopez-Canosa, A, Romero-Arias, JR, Barrio, R, Castaño, O, Hernandez-Machado, A, (2023). Modelling of chemotactic sprouting endothelial cells through an extracellular matrix Frontiers In Bioengineering And Biotechnology 11, 1145550

Sprouting angiogenesis is a core biological process critical to vascular development. Its accurate simulation, relevant to multiple facets of human health, is of broad, interdisciplinary appeal. This study presents an in-silico model replicating a microfluidic assay where endothelial cells sprout into a biomimetic extracellular matrix, specifically, a large-pore, low-concentration fibrin-based porous hydrogel, influenced by chemotactic factors. We introduce a novel approach by incorporating the extracellular matrix and chemotactic factor effects into a unified term using a single parameter, primarily focusing on modelling sprouting dynamics and morphology. This continuous model naturally describes chemotactic-induced sprouting with no need for additional rules. In addition, we extended our base model to account for matrix sensing and degradation, crucial aspects of angiogenesis. We validate our model via a hybrid in-silico experimental method, comparing the model predictions with experimental results derived from the microfluidic setup. Our results underscore the intricate relationship between the extracellular matrix structure and angiogenic sprouting, proposing a promising method for predicting the influence of the extracellular matrix on angiogenesis.Copyright © 2023 Ferre-Torres, Noguera-Monteagudo, Lopez-Canosa, Romero-Arias, Barrio, Castaño and Hernandez-Machado.

JTD Keywords: angiogenesis, biomimmetic, chemotaxis, endothelial cells, filopodia, growth, in silico model, mathematical models, mechanisms, metalloproteinase, migration, morphogenesis, phase field, pore-size, simulation, Angiogenesis, Biomimmetic, Chemotaxis, Endothelial cells, Extracellular matrix, In silico model, Mathematical models, Phase field, Tip cells