DONATE

Publications

by Keyword: polymeric nanoparticles

Deng, LL, Olea, AR, Ortiz-Perez, A, Sun, BB, Wang, JH, Pujals, S, Palmans, ARA, Albertazzi, L, (2024). Imaging Diffusion and Stability of Single-Chain Polymeric Nanoparticles in a Multi-Gel Tumor-on-a-Chip Microfluidic Device Small Methods , e2301072

The performance of single-chain polymeric nanoparticles (SCPNs) in biomedical applications highly depends on their conformational stability in cellular environments. Until now, such stability studies are limited to 2D cell culture models, which do not recapitulate the 3D tumor microenvironment well. Here, a microfluidic tumor-on-a-chip model is introduced that recreates the tumor milieu and allows in-depth insights into the diffusion, cellular uptake, and stability of SCPNs. The chip contains Matrigel/collagen-hyaluronic acid as extracellular matrix (ECM) models and is seeded with cancer cell MCF7 spheroids. With this 3D platform, it is assessed how the polymer's microstructure affects the SCPN's behavior when crossing the ECM, and evaluates SCPN internalization in 3D cancer cells. A library of SCPNs varying in microstructure is prepared. All SCPNs show efficient ECM penetration but their cellular uptake/stability behavior depends on the microstructure. Glucose-based nanoparticles display the highest spheroid uptake, followed by charged nanoparticles. Charged nanoparticles possess an open conformation while nanoparticles stabilized by internal hydrogen bonding retain a folded structure inside the tumor spheroids. The 3D microfluidic tumor-on-a-chip platform is an efficient tool to elucidate the interplay between polymer microstructure and SCPN's stability, a key factor for the rational design of nanoparticles for targeted biological applications.© 2024 The Authors. Small Methods published by Wiley-VCH GmbH.

JTD Keywords: 3d cancer cell uptake, Cancer cells, Cell culture, Cell uptake, Cellular uptake, Diseases, Ecm penetration, Extracellular matrices, Extracellular matrix penetration, Functional polymers, Hydrogen bonds, Medical applications, Microfluidics, Microstructure, Nanoparticles, Polymeric nanoparticles, Scpns, Single chains, Single-chain polymeric nanoparticle, Stability, Tumor-on-a-chip, Tumors


Dols-Perez, A, Fornaguera, C, Feiner-Gracia, N, Grijalvo, S, Solans, C, Gomila, G, (2023). Effect of surface functionalization and loading on the mechanical properties of soft polymeric nanoparticles prepared by nano-emulsion templating Colloids And Surfaces B-Biointerfaces 222, 113019

Drug and gene delivery systems based on polymeric nanoparticles offer a greater efficacy and a reduced toxicity compared to traditional formulations. Recent studies have evidenced that their internalization, biodistribution and efficacy can be affected, among other factors, by their mechanical properties. Here, we analyze by means of Atomic Force Microscopy force spectroscopy how composition, surface functionalization and loading affect the mechanics of nanoparticles. For this purpose, nanoparticles made of Poly(lactic-co-glycolic) (PLGA) and Ethyl cellulose (EC) with different functionalizations and loading were prepared by nano-emulsion templating using the Phase Inversion Composition method (PIC) to form the nano-emulsions. A multiparametric nanomechanical study involving the determination of the Young's modulus, maximum deformation and breakthrough force was carried out. The obtained results showed that composition, surface functionalization and loading affect the nanomechanical properties in a different way, thus requiring, in general, to consider the overall mechanical properties after the addition of a functionalization or loading. A graphical representation method has been proposed enabling to easily identify mechanically equivalent formulations, which is expected to be useful in the development of soft polymeric nanoparticles for pre-clinical and clinical use.Copyright © 2022 The Authors. Published by Elsevier B.V. All rights reserved.

JTD Keywords: afm, atomic-force microscopy, cell, delivery-systems, drug-delivery, emulsification approach, internalization, mechanics of nanoparticles, nanomedicine, nanoparticle functionalization, particles, protein corona, size, young?s modulus, Afm, Loaded plga nanoparticles, Mechanics of nanoparticles, Nanomedicine, Nanoparticle functionalization, Polymeric nanoparticles, Young’s modulus


Mares, AG, Pacassoni, G, Marti, JS, Pujals, S, Albertazzi, L, (2021). Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology Plos One 16, e0251821

Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.

JTD Keywords: controlled-release, doxorubicin, encapsulation, functional nanoparticles, nanoprecipitation, pharmacokinetics, polymeric nanoparticles, shape, surface-chemistry, In-vitro


Sola-Barrado, B., M. Leite, D., Scarpa, E., Duro-Castano, A., Battaglia, G., (2020). Combinatorial intracellular delivery screening of anticancer drugs Molecular Pharmaceutics 17, (12), 4709-4714

Conventional drug solubilization strategies limit the understanding of the full potential of poorly water-soluble drugs during drug screening. Here, we propose a screening approach in which poorly water-soluble drugs are entrapped in poly(2-(methacryloyloxyethyl phosphorylcholine)-poly(2-(diisopropylaminoethyl methacryate) (PMPC-PDPA) polymersomes (POs) to enhance drug solubility and facilitate intracellular delivery. By using a human pediatric glioma cell model, we demonstrated that PMPC-PDPA POs mediated intracellular delivery of cytotoxic and epigenetic drugs by receptor-mediated endocytosis. Additionally, when delivered in combination, drug-loaded PMPC-PDPA POs triggered both an enhanced drug efficacy and synergy compared to that of a conventional combinatorial screening. Hence, our comprehensive synergy analysis illustrates that our screening methodology, in which PMPC-PDPA POs are used for intracellular codelivery of drugs, allows us to identify potent synergistic profiles of anticancer drugs.

JTD Keywords: Combination therapy, Drug screening, Drug solubilization, Intracellular drug delivery, Polymeric nanoparticles, Synergy analysis


Movellan, J., Urbán, P., Moles, E., de la Fuente, J. M., Sierra, T., Serrano, J. L., Fernàndez-Busquets, X., (2014). Amphiphilic dendritic derivatives as nanocarriers for the targeted delivery of antimalarial drugs Biomaterials 35, (27), 7940-7950

It can be foreseen that in a future scenario of malaria eradication, a varied armamentarium will be required, including strategies for the targeted administration of antimalarial compounds. The development of nanovectors capable of encapsulating drugs and of delivering them to Plasmodium-infected cells with high specificity and efficacy and at an affordable cost is of particular interest. With this objective, dendritic derivatives based on 2,2-bis(hydroxymethyl)propionic acid (bis-MPA) and Pluronic® polymers have been herein explored. Four different dendritic derivatives have been tested for their capacity to encapsulate the antimalarial drugs chloroquine (CQ) and primaquine (PQ), their specific targeting to Plasmodium-infected red blood cells (pRBCs), and their antimalarial activity in vitro against the human pathogen Plasmodium falciparum and in vivo against the rodent malaria species Plasmodium yoelii. The results obtained have allowed the identification of two dendritic derivatives exhibiting specific targeting to pRBCs vs. non-infected RBCs, which reduce the in vitro IC50 of CQ and PQ by ca. 3- and 4-fold down to 4.0 nm and 1.1 μm, respectively. This work on the application of dendritic derivatives to antimalarial targeted drug delivery opens the way for the use of this new type of chemicals in future malaria eradication programs.

JTD Keywords: Antimalarial targeted drug delivery, Dendrimers, Malaria, Nanomedicine, Plasmodium, Polymeric nanoparticles