by Keyword: representation
Santos-Pata, D, Amil, AF, Raikov, IG, Rennó-Costa, C, Mura, A, Soltesz, I, Verschure, PFMJ, (2021). Entorhinal mismatch: A model of self-supervised learning in the hippocampus Iscience 24, 102364
The hippocampal formation displays a wide range of physiological responses to different spatial manipulations of the environment. However, very few attempts have been made to identify core computational principles underlying those hippocampal responses. Here, we capitalize on the observation that the entorhinal-hippocampal complex (EHC) forms a closed loop and projects inhibitory signals “countercurrent” to the trisynaptic pathway to build a self-supervised model that learns to reconstruct its own inputs by error backpropagation. The EHC is then abstracted as an autoencoder, with the hidden layers acting as an information bottleneck. With the inputs mimicking the firing activity of lateral and medial entorhinal cells, our model is shown to generate place cells and to respond to environmental manipulations as observed in rodent experiments. Altogether, we propose that the hippocampus builds conjunctive compressed representations of the environment by learning to reconstruct its own entorhinal inputs via gradient descent.
JTD Keywords: cognitive neuroscience, grid cells, long-term, networks, neural networks, novelty, oscillations, pattern separation, region, representation, working-memory, Cognitive neuroscience, Neural networks, Rat dentate gyrus, Systems neuroscience
Estefan, DP, Zucca, R, Arsiwalla, X, Principe, A, Zhang, H, Rocamora, R, Axmacher, N, Verschure, PFMJ, (2021). Volitional learning promotes theta phase coding in the human hippocampus Proceedings Of The National Academy Of Sciences Of The United States Of America 118, e2021238118
© 2021 National Academy of Sciences. All rights reserved. Electrophysiological studies in rodents show that active navigation enhances hippocampal theta oscillations (4–12 Hz), providing a temporal framework for stimulus-related neural codes. Here we show that active learning promotes a similar phase coding regime in humans, although in a lower frequency range (3–8 Hz). We analyzed intracranial electroencephalography (iEEG) from epilepsy patients who studied images under either volitional or passive learning conditions. Active learning increased memory performance and hippocampal theta oscillations and promoted a more accurate reactivation of stimulus-specific information during memory retrieval. Representational signals were clustered to opposite phases of the theta cycle during encoding and retrieval. Critically, during active but not passive learning, the temporal structure of intracycle reactivations in theta reflected the semantic similarity of stimuli, segregating conceptually similar items into more distant theta phases. Taken together, these results demonstrate a multilayered mechanism by which active learning improves memory via a phylogenetically old phase coding scheme.
JTD Keywords: active learning, dynamics, gamma-power, hippocampus, intracranial eeg, movement, navigation, neural phase coding, oscillations, representations, retrieval, rhythm, theta oscillations, toolbox, Active learning, Theta oscillations, Working-memory
Santos-Pata, D., Escuredo, A., Mathews, Z., Verschure, P., (2018). Insect behavioral evidence of spatial memories during environmental reconfiguration Biomimetic and Biohybrid Systems 7th International Conference, Living Machines 2018 (Lecture Notes in Computer Science) , Springer International Publishing (Paris, France) 10928, 415-427
Insects are great explorers, able to navigate through long-distance trajectories and successfully find their way back. Their navigational routes cross dynamic environments suggesting adaptation to novel configurations. Arthropods and vertebrates share neural organizational principles and it has been shown that rodents modulate their neural spatial representation accordingly with environmental changes. However, it is unclear whether insects reflexively adapt to environmental changes or retain memory traces of previously explored situations. We sought to disambiguate between insect behavior in environmental novel situations and reconfiguration conditions. An immersive mixed-reality multi-sensory setup was built to replicate multi-sensory cues. We have designed an experimental setup where female crickets Gryllus Bimaculatus were trained to move towards paired auditory and visual cues during primarily phonotactic driven behavior. We hypothesized that insects were capable of identifying sensory modifications in known environments. Our results show that, regardless of the animal’s history, novel situation conditions did not compromise the animals performance and navigational directionality towards a new target location. However, in trials where visual and auditory stimuli were spatially decoupled, the animals heading variability towards a previously known position significantly increased. Our findings showed that crickets can behaviorally manifest environmental reconfiguration, suggesting the encoding for spatial representation.
JTD Keywords: Insect, Memory, Navigation, Spatial representation
Aviles, A. I., Widlak, T., Casals, A., Nillesen, M. M., Ammari, H., (2017). Robust cardiac motion estimation using ultrafast ultrasound data: A low-rank topology-preserving approach Physics in Medicine and Biology , 62, (12), 4831-4851
Cardiac motion estimation is an important diagnostic tool for detecting heart diseases and it has been explored with modalities such as MRI and conventional ultrasound (US) sequences. US cardiac motion estimation still presents challenges because of complex motion patterns and the presence of noise. In this work, we propose a novel approach to estimate cardiac motion using ultrafast ultrasound data. Our solution is based on a variational formulation characterized by the L 2-regularized class. Displacement is represented by a lattice of b-splines and we ensure robustness, in the sense of eliminating outliers, by applying a maximum likelihood type estimator. While this is an important part of our solution, the main object of this work is to combine low-rank data representation with topology preservation. Low-rank data representation (achieved by finding the k-dominant singular values of a Casorati matrix arranged from the data sequence) speeds up the global solution and achieves noise reduction. On the other hand, topology preservation (achieved by monitoring the Jacobian determinant) allows one to radically rule out distortions while carefully controlling the size of allowed expansions and contractions. Our variational approach is carried out on a realistic dataset as well as on a simulated one. We demonstrate how our proposed variational solution deals with complex deformations through careful numerical experiments. The low-rank constraint speeds up the convergence of the optimization problem while topology preservation ensures a more accurate displacement. Beyond cardiac motion estimation, our approach is promising for the analysis of other organs that exhibit motion.
JTD Keywords: Cardiac analysis, Low-rank representation, Motion estimation, Topology preservation, Ultrafast ultrasound