by Keyword: Biofilms

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Cendra, Maria del Mar, Blanco-Cabra, Núria, Pedraz, Lucas, Torrents, Eduard, (2019). Optimal environmental and culture conditions allow the in vitro coexistence of Pseudomonas aeruginosa and Staphylococcus aureus in stable biofilms Scientific Reports 9, (1), 16284

The coexistence between species that occurs in some infections remains hard to achieve in vitro since bacterial fitness differences eventually lead to a single organism dominating the mixed culture. Pseudomonas aeruginosa and Staphylococcus aureus are major pathogens found growing together in biofilms in disease-affected lungs or wounds. Herein, we tested and analyzed different culture media, additives and environmental conditions to support P. aeruginosa and S. aureus coexistence in vitro. We have unraveled the potential of DMEM to support the growth of these two organisms in mature cocultured biofilms (three days old) in an environment that dampens the pH rise. Our conditions use equal initial inoculation ratios of both strains and allow the stable formation of separate S. aureus microcolonies that grow embedded in a P. aeruginosa biofilm, as well as S. aureus biofilm overgrowth when bovine serum albumin is added to the system. Remarkably, we also found that S. aureus survival is strictly dependent on a well-characterized phenomenon of oxygen stratification present in the coculture biofilm. An analysis of differential tolerance to gentamicin and ciprofloxacin treatment, depending on whether P. aeruginosa and S. aureus were growing in mono- or coculture biofilms, was used to validate our in vitro coculture conditions.

Keywords: Applied microbiology, Biofilms

Sjoberg, B. M., Torrents, E., (2011). Shift in ribonucleotide reductase gene expression in pseudomonas aeruginosa during infection Infection and Immunity , 79, (7), 2663-2669

The roles of different ribonucleotide reductases (RNRs) in bacterial pathogenesis have not been studied systematically. In this work we analyzed the importance of the different Pseudomonas aeruginosa RNRs in pathogenesis using the Drosophila melanogaster host-pathogen interaction model. P. aeruginosa codes for three different RNRs with different environmental requirements. Class II and III RNR chromosomal mutants exhibited reduced virulence in this model. Translational reporter fusions of RNR gene nrdA, nrdJ, or nrdD to the green fluorescent protein were constructed to measure the expression of each class during the infection process. Analysis of the P. aeruginosa infection by flow cytometry revealed increased expression of nrdJ and nrdD and decreased nrdA expression during the infection process. Expression of each RNR class fits with the pathogenicities of the chromosomal deletion mutants. An extended understanding of the pathogenicity and physiology of P. aeruginosa will be important for the development of novel drugs against infections in cystic fibrosis patients.

Keywords: Broad-host-range, Anaerobic growth, Drosophila-melanogaster, Bacterial biofilms, Escherichia-coli, Cystic-fibrosis, Model host, Virulence, Promoter, Vectors