by Keyword: Biomaterials

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Fernández-Costa, J. M., Fernández-Garibay, X., Velasco-Mallorquí, F., Ramón-Azcón, J., (2021). Bioengineered in vitro skeletal muscles as new tools for muscular dystrophies preclinical studies Journal of Tissue Engineering 12, 1-19

Muscular dystrophies are a group of highly disabling disorders that share degenerative muscle weakness and wasting as common symptoms. To date, there is not an effective cure for these diseases. In the last years, bioengineered tissues have emerged as powerful tools for preclinical studies. In this review, we summarize the recent technological advances in skeletal muscle tissue engineering. We identify several ground-breaking techniques to fabricate in vitro bioartificial muscles. Accumulating evidence shows that scaffold-based tissue engineering provides topographical cues that enhance the viability and maturation of skeletal muscle. Functional bioartificial muscles have been developed using human myoblasts. These tissues accurately responded to electrical and biological stimulation. Moreover, advanced drug screening tools can be fabricated integrating these tissues in electrical stimulation platforms. However, more work introducing patient-derived cells and integrating these tissues in microdevices is needed to promote the clinical translation of bioengineered skeletal muscle as preclinical tools for muscular dystrophies.

Keywords: Biomaterials, Drug screening platforms, Muscular dystrophy, Skeletal muscle, Tissue engineering

Rodríguez-Contreras, A., Torres, D., Guillem-Marti, J., Sereno, P., Ginebra, M. P., Calero, J. A., Manero, J. M., Rupérez, E., (2020). Development of novel dual-action coatings with osteoinductive and antibacterial properties for 3D-printed titanium implants Surface and Coatings Technology 403, 126381

Gallium (Ga) has been recently proposed as a novel therapeutic agent, since it promotes bone formation and exhibits antibacterial properties. This work focuses on the optimization of a thermochemical treatment that incorporates Ga ions by the addition of the body-friendly Ga nitrate approved by the Food and Drug Administration. The objective was to simultaneously provide the inner and the outer surfaces of porous‑titanium surfaces obtained by 3D-printing with bioactivity and antibacterial properties. The apatite-forming ability of the coating, as well as the antibacterial activity and SaOS-2 cell adhesion, proliferation, differentiation and mineralization were evaluated and compared with untreated Ti surfaces. The characterization of the surfaces revealed the presence of a Ga-containing calcium titanate layer, which was non cytotoxic and in simulated body fluid produced a homogeneous apatite coating well adhered to the substrate. The formation of this apatite layer was accelerated with increasing Ga amounts present on the surface, resulting also in an increase in thickness. An initial quick release of Ga ion promoted the antibacterial effect against gram positive strains, especially for Pseudomonas aeruginosa, one of the most frequent resistant pathogens in nosocomial infections. SaOS-2 cells adhered and proliferated on the Ga-doped Ti surfaces, its presence contributed to cell differentiation and to considerably increase the mineralization levels. Thus, the developed multifunctional coatings could provide bioactivity to the porous Ti implants while protecting them from the most frequent gram-negative pathogens.

Keywords: 3D-printing, Antibacterial activity, Biomaterials, Gallium, Porous structures, Titanium implants

Hakimi, O., Gelpi, J. L., Krallinger, M., Curi, F., Repchevsky, D., Ginebra, M. P., (2020). The devices, experimental scaffolds, and biomaterials ontology (DEB): A tool for mapping, annotation, and analysis of biomaterials data Advanced Functional Materials 30, (16), 1909910

The size and complexity of the biomaterials literature makes systematic data analysis an excruciating manual task. A practical solution is creating databases and information resources. Implant design and biomaterials research can greatly benefit from an open database for systematic data retrieval. Ontologies are pivotal to knowledge base creation, serving to represent and organize domain knowledge. To name but two examples, GO, the gene ontology, and CheBI, Chemical Entities of Biological Interest ontology and their associated databases are central resources to their respective research communities. The creation of the devices, experimental scaffolds, and biomaterials ontology (DEB), an open resource for organizing information about biomaterials, their design, manufacture, and biological testing, is described. It is developed using text analysis for identifying ontology terms from a biomaterials gold standard corpus, systematically curated to represent the domain's lexicon. Topics covered are validated by members of the biomaterials research community. The ontology may be used for searching terms, performing annotations for machine learning applications, standardized meta-data indexing, and other cross-disciplinary data exploitation. The input of the biomaterials community to this effort to create data-driven open-access research tools is encouraged and welcomed.

Keywords: Biomaterials, Databases, Ontology

Rubi-Sans, G., Castaño, O., Cano, I., Mateos-Timoneda, M. A., Perez-Amodio, S., Engel, E., (2020). Engineering cell-derived matrices: From 3D models to advanced personalized therapies Advanced Functional Materials 30, (44), e2000496

Regenerative medicine and disease models have evolved in recent years from two to three dimensions, providing in vitro constructs that are more similar to in vivo tissues. By mimicking native tissues, cell-derived matrices (CDMs) have emerged as new modifiable extracellular matrices for a variety of tissues, allowing researchers to study basic cellular processes in tissue-like structures, test tissue regeneration approaches, and model disease development. In this review, different fabrication techniques and characterization methods of CDMs are presented and examples of their application in cell behavior studies, tissue regeneration, and disease models are provided. In addition, future guidelines and perspectives in the field of CDMs are discussed.

Keywords: 3D models, Biomaterials, Cell-derived matrices, Extracellular matrix, Personalized therapies

Park, D., Wershof, E., Boeing, S., Labernadie, A., Jenkins, R. P., George, S., Trepat, X., Bates, P. A., Sahai, E., (2020). Extracellular matrix anisotropy is determined by TFAP2C-dependent regulation of cell collisions Nature Materials 19, 227-238

The isotropic or anisotropic organization of biological extracellular matrices has important consequences for tissue function. We study emergent anisotropy using fibroblasts that generate varying degrees of matrix alignment from uniform starting conditions. This reveals that the early migratory paths of fibroblasts are correlated with subsequent matrix organization. Combined experimentation and adaptation of Vicsek modelling demonstrates that the reorientation of cells relative to each other following collision plays a role in generating matrix anisotropy. We term this behaviour ‘cell collision guidance’. The transcription factor TFAP2C regulates cell collision guidance in part by controlling the expression of RND3. RND3 localizes to cell–cell collision zones where it downregulates actomyosin activity. Cell collision guidance fails without this mechanism in place, leading to isotropic matrix generation. The cross-referencing of alignment and TFAP2C gene expression signatures against existing datasets enables the identification and validation of several classes of pharmacological agents that disrupt matrix anisotropy.

Keywords: Biomaterials – cells, Cell migration, Self-assembly, Tissues

Monferrer, Ezequiel, Martínn-Vañó, Susana, Carretero, Aitor, Garcíaa-Lizarribar, Andrea, Burgos-Panadero, Rebeca, Navarro, Samuel, Samitier, Josep, Noguera, Rosa, (2020). A three-dimensional bioprinted model to evaluate the effect of stiffness on neuroblastoma cell cluster dynamics and behavior Scientific Reports 10, (1), 6370

Three-dimensional (3D) bioprinted culture systems allow to accurately control microenvironment components and analyze their effects at cellular and tissue levels. The main objective of this study was to identify, quantify and localize the effects of physical-chemical communication signals between tumor cells and the surrounding biomaterial stiffness over time, defining how aggressiveness increases in SK-N-BE(2) neuroblastoma (NB) cell line. Biomimetic hydrogels with SK-N-BE(2) cells, methacrylated gelatin and increasing concentrations of methacrylated alginate (AlgMA 0%, 1% and 2%) were used. Young’s modulus was used to define the stiffness of bioprinted hydrogels and NB tumors. Stained sections of paraffin-embedded hydrogels were digitally quantified. Human NB and 1% AlgMA hydrogels presented similar Young´s modulus mean, and orthotopic NB mice tumors were equally similar to 0% and 1% AlgMA hydrogels. Porosity increased over time; cell cluster density decreased over time and with stiffness, and cell cluster occupancy generally increased with time and decreased with stiffness. In addition, cell proliferation, mRNA metabolism and antiapoptotic activity advanced over time and with stiffness. Together, this rheological, optical and digital data show the potential of the 3D in vitro cell model described herein to infer how intercellular space stiffness patterns drive the clinical behavior associated with NB patients.

Keywords: Biomaterials - cells, Paediatric cancer

Marti-Muñoz, Joan, Xuriguera, Elena, Layton, John W., Planell, Josep A., Rankin, Stephen E., Engel, Elisabeth, Castaño, Oscar, (2019). Feasible and pure P2O5-CaO nanoglasses: An in-depth NMR study of synthesis for the modulation of the bioactive ion release Acta Biomaterialia 94, 574-584

The use of bioactive glasses (e.g. silicates, phosphates, borates) has demonstrated to be an effective therapy for the restoration of bone fractures, wound healing and vascularization. Their partial dissolution towards the surrounding tissue has shown to trigger positive bioactive responses, without the necessity of using growth factors or cell therapy, which reduces money-costs, side effects and increases their translation to the clinics. However, bioactive glasses often need from stabilizers (e.g. SiO44−, Ti4+, Co2+, etc.) that are not highly abundant in the body and which metabolization is not fully understood. In this study, we were focused on synthesizing pure calcium phosphate glasses without the presence of such stabilizers. We combined a mixture of ethylphosphate and calcium 2-methoxyethoxide to synthesize nanoparticles with different compositions and degradability. Synthesis was followed by an in-depth nuclear magnetic resonance characterization, complemented with other techniques that helped us to correlate the chemical structure of the glasses with their physiochemical properties and reaction mechanism. After synthesis, the organically modified xerogel (i.e. calcium monoethylphosphate) was treated at 200 or 350 °C and its solubility was maintained and controlled due to the elimination of organics, increase of phosphate-calcium interactions and phosphate polycondensation. To the best of our knowledge, we are reporting the first sol-gel synthesis of binary (P2O5-CaO) calcium phosphate glass nanoparticles in terms of continuous polycondensated phosphate chains structure without the addition of extra ions. The main goal is to straightforward the synthesis, to get a safer metabolization and to modulate the bioactive ion release. Additionally, we shed light on the chemical structure, reaction mechanism and properties of calcium phosphate glasses with high calcium contents, which nowadays are poorly understood. Statement of Significance The use of bioactive inorganic materials (i.e. bioactive ceramics, glass-ceramics and glasses) for biomedical applications is attractive due to their good integration with the host tissue without the necessity of adding exogenous cells or growth factors. In particular, degradable calcium phosphate glasses are completely resorbable, avoiding the retention in the body of the highly stable silica network of silicate glasses, and inducing a more controllable degradability than bioactive ceramics. However, most calcium phosphate glasses include the presence of stabilizers (e.g. Ti4+, Na+, Co2+), which metabolization is not fully understood and complicates their synthesis. The development of binary calcium phosphate glasses with controlled degradability reduces these limitations, offering a simple and completely metabolizable material with higher transfer to the clinics.

Keywords: Calcium phosphate glasses, Sol-gel process, NMR spectroscopy, Ion release, Biomaterials

Castaño, O., Pérez-Amodio, S., Navarro, C., Mateos-Timoneda, M.A., Engel, E., (2018). Instructive microenvironments in skin wound healing: Biomaterials as signal releasing platforms Advanced Drug Delivery Reviews 129, 95-117

Skin wound healing aims to repair and restore tissue through a multistage process that involves different cells and signalling molecules that regulate the cellular response and the dynamic remodelling of the extracellular matrix. Nowadays, several therapies that combine biomolecule signals (growth factors and cytokines) and cells are being proposed. However, a lack of reliable evidence of their efficacy, together with associated issues such as high costs, a lack of standardization, no scalable processes, and storage and regulatory issues, are hampering their application. In situ tissue regeneration appears to be a feasible strategy that uses the body's own capacity for regeneration by mobilizing host endogenous stem cells or tissue-specific progenitor cells to the wound site to promote repair and regeneration. The aim is to engineer instructive systems to regulate the spatio-temporal delivery of proper signalling based on the biological mechanisms of the different events that occur in the host microenvironment. This review describes the current state of the different signal cues used in wound healing and skin regeneration, and their combination with biomaterial supports to create instructive microenvironments for wound healing.

Keywords: Instructive biomaterials, Skin regeneration, Wound healing, Signalling release, In situ tissue engineering

Fraioli, R., Tsimbouri, P. M., Fisher, L. E., Nobbs, A. H., Su, B., Neubauer, S., Rechenmacher, F., Kessler, H., Ginebra, M. P., Dalby, M. J., Manero, J. M., Mas-Moruno, C., (2017). Towards the cell-instructive bactericidal substrate: Exploring the combination of nanotopographical features and integrin selective synthetic ligands Scientific Reports 7, (1), 16363

Engineering the interface between biomaterials and tissues is important to increase implant lifetime and avoid failures and revision surgeries. Permanent devices should enhance attachment and differentiation of stem cells, responsible for injured tissue repair, and simultaneously discourage bacterial colonization; this represents a major challenge. To take first steps towards such a multifunctional surface we propose merging topographical and biochemical cues on the surface of a clinically relevant material such as titanium. In detail, our strategy combines antibacterial nanotopographical features with integrin selective synthetic ligands that can rescue the adhesive capacity of the surfaces and instruct mesenchymal stem cell (MSC) response. To this end, a smooth substrate and two different high aspect ratio topographies have been produced and coated either with an αvβ3-selective peptidomimetic, an α5β1-selective peptidomimetic, or an RGD/PHSRN peptidic molecule. Results showed that antibacterial effects of the substrates could be maintained when tested on pathogenic Pseudomonas aeruginosa. Further, functionalization increased MSC adhesion to the surfaces and the αvβ3-selective peptidomimetic-coated nanotopographies promoted osteogenesis. Such a dual physicochemical approach to achieve multifunctional surfaces represents a first step in the design of novel cell-instructive biomaterial surfaces.

Keywords: Bioinspired materials, Biomaterials – cells

Arcos, D., Boccaccini, A. R., Bohner, M., Díez-Pérez, A., Epple, M., Gómez-Barrena, E., Herrera, A., Planell, J. A., Rodríguez-Mañas, L., Vallet-Regí, M., (2014). The relevance of biomaterials to the prevention and treatment of osteoporosis Acta Biomaterialia 10, (5), 1793-1805

Osteoporosis is a worldwide disease with a very high prevalence in humans older than 50. The main clinical consequences are bone fractures, which often lead to patient disability or even death. A number of commercial biomaterials are currently used to treat osteoporotic bone fractures, but most of these have not been specifically designed for that purpose. Many drug- or cell-loaded biomaterials have been proposed in research laboratories, but very few have received approval for commercial use. In order to analyze this scenario and propose alternatives to overcome it, the Spanish and European Network of Excellence for the Prevention and Treatment of Osteoporotic Fractures, "Ageing", was created. This network integrates three communities, e.g. clinicians, materials scientists and industrial advisors, tackling the same problem from three different points of view. Keeping in mind the premise "living longer, living better", this commentary is the result of the thoughts, proposals and conclusions obtained after one year working in the framework of this network.

Keywords: Ageing, Biomaterials, Bone, Osteoporosis

Miranda Coelho, Nuno, Gonzalez-Garcia, Cristina, Salmeron-Sanchez, Manuel, Altankov, George, (2011). Arrangement of type IV collagen and laminin on substrates with controlled density of -OH groups Tissue Engineering Part A , 17, (17-18), 2245-2257

Collagen IV (Col IV) and laminin (Lam) are the main structural components of the basement membrane where they form two overlapping polymeric networks. We studied the adsorption pattern of these proteins on five model surfaces with tailored density of -OH groups obtained by copolymerization of different ratios ethyl acrylate (EA) and hydroxyl EA (HEA): X(OH) = 0, X(OH) = 0.3, X(OH) = 0.5, X(OH) = 0.7, and X(OH) = 1 (where X refers the ratio of HEA). Atomic force microscopy revealed substratum-specific adsorption patterns of Col IV and Lam, ranging from single molecules deposition on more hydrophilic substrata to the formation of complex networks on hydrophobic ones. Human umbilical endothelial cells were used to study the biological performance of adsorbed proteins, following the overall cell morphology, the quantities for cell adhesion and spreading, and the development of focal adhesion complexes and actin cytoskeleton. Surprisingly, two optima in the cellular interaction were observed-one on the most hydrophilic X(OH) = 1 and other on the relatively hydrophobic X(OH) = 0.3 substrate-valid for both Col IV and Lam. When the proteins were adsorbed consecutively, a hydrophobic shift to X(OH) = 0 substratum was obtained. Collectively, these data suggest that varying with the density of -OH groups one can tailor the conformation and the functional activity of adsorbed basement membrane proteins.

Keywords: Atomic-force microscopy, Fibronectin adsorption, Basement-membranes, Polymer surfaces, Cell-adhesion, Biomaterials, Wettability, Fibrinogen

Hristova, K., Pecheva, E., Pramatarova, L., Altankov, G., (2011). Improved interaction of osteoblast-like cells with apatite-nanodiamond coatings depends on fibronectin Journal of Materials Science: Materials in Medicine , 22, (8), 1891-1900

New apatite (AP)/nanodiamond (ND) coating has been developed to improve physical and biological properties of stainless steel (SS) versus single AP coating. Homogeneously electrodeposited AP-ND layer demonstrates increased mechanical strength, interlayer cohesion and ductility. In the absence of serum, osteoblast-like MG63 cells attach well but poorly spread on both AP and AP-ND substrata. Pre-adsorption with serum or fibronectin (FN) improves the cellular interaction-an effect that is better pronounced on the AP-ND coating. In single protein adsorption study fluorescein isothiocyanate-labeled FN (FITC-FN) shows enhanced deposition on the AP-ND layer consistent with the significantly improved cell adhesion, spreading and focal adhesions formation (in comparison to SS and AP), particularly at low FN adsorption concentrations (1 mu g/ml). Higher FN concentrations (20 mu g/ml) abolish this difference suggesting that the promoted cellular interaction of serum (where FN is low) is caused by the greater affinity for FN. Moreover, it is found that MG63 cells tend to rearrange both adsorbed and secreted FN on the AP-ND layer suggesting facilitated FN matrix formation.

Keywords: Extracellular-matrix, Protein adsorption, Integrins, Adhesion, Biomaterials, Surfaces, Polymerization, Composite, Implants, Titanium

Lagunas, A., Comelles, J., Martinez, E., Samitier, J., (2010). Universal chemical gradient platforms using poly(methyl methacrylate) based on the biotin streptavidin interaction for biological applications Langmuir 26, (17), 14154-14161

This article describes a simple method for the construction of a universal surface chemical gradient platform based on the biotin streptavidin model. In this approach, surface chemical gradients were prepared in poly(methyl methacrylate) (PM MA), a biocompatible polymer, by a controlled hydrolysis procedure. The physicochemical properties of the resulting modified surfaces were extensively characterized. Chemical analysis carried out via time-of-flight secondary ion mass spectrometry (ToRSIMS) and X-ray photoelectron spectroscopy (XPS) showed the formation of a smooth, highly controllable carboxylic acid gradient of increasing concentration along the sample surface. Atomic force microscopy (AFM) and contact angle (CA) results indicate that, in contrast with most of the chemical gradient methods published in the literature, the chemical modification of the polymer surface barely affects its physical properties. The introduction of carboxylic acid functionality along the surface was then used for biomolecule anchoring. For this purpose, the surface was activated and derivatized first with biotin and finally with streptavidin (SA V) in a directed orientation fashion. The SAV gradient was qualitatively assessed by fluorescence microscopy analysis and quantified by surface plasmon resonance (SPR) in order to establish a quantitative relationship between SAV surface densities and the surface location. The usefulness of the fabrication method described for biological applications was tested by immobilizing biotinylated bradykinin onto the SAV gradient. This proof-of-concept application shows the effectiveness of the concentration range of the gradient because the effects of bradykinin on cell morphology were observed to increase gradually with increasing drug concentrations. The intrinsic characteristics of the fabricated gradient platform (absence of physicochemical modifications other than those due to the biomolecules included) allow us to attribute cell behavior unequivocally to the biomolecule surface density changes.

Keywords: Wettability gradient, Polyethylene surface, Combinatorial, Immobilization, Biomaterials, Fabrication, Deposition, Bradykinin, Monolayers, Discharge

Toromanov, Georgi, González-García, Cristina, Altankov, George, Salmerón-Sánchez, Manuel, (2010). Vitronectin activity on polymer substrates with controlled -OH density Polymer 51, (11), 2329-2336

Vitronectin (VN) adsorption on a family of model substrates consisting of copolymers of ethyl acrylate and hydroxyl ethylacrylate in different ratios (to obtain a controlled surface density of -OH groups) was investigated by Atomic Force Microscopy (AFM). It is shown that the fraction of the substrate covered by the protein depends strongly on the amount of hydroxyl groups in the sample and it monotonically decreases as the -OH density increases. Isolated globular-like VN molecules are observed on the surfaces with the higher OH density. As the fraction of hydroxyl groups decreases, aggregates of 3-5 VN molecules are observed on the sample. Overall cell morphology, focal adhesion formation and actin cytoskeleton development are investigated to assess the biological activity of the adsorbed VN on the different surfaces. Dermal fibroblast cells show excellent material interaction on the more hydrophobic samples (OH contents lower than 0.5), which reveals enhanced VN activity on this family of substrates as compared with other extracellular matrix proteins (e.g., fibronectin and fibrinogen).

Keywords: Copolymers, Vitronectin, AFM, Self-assembled monolayers, Cell-adhesion, Thermal transitions, Protein adsorption, Surfaces, Fibronectin, Biomaterials, Attachment, Fibrinogen

Salmeron-Sanchez, M., Altankov, G., (2010). Cell-Protein-Material interaction in tissue engineering Tissue Engineering (ed. Eberli, D.), Intech (Vukovar, Croatia) , 77-102

The initial cellular events that take place at the biomaterials interface mimic to a certain extent the natural adhesive interaction of cells with the extracellular matrix (ECM) (Spie, 2002; Griffin & Naughton, 2002; Grinnell, 1986). In fact, the living cells cannot interact directly with foreign materials, but they readily attach to the adsorbed layer of proteins (upon contact with physiological fluids in vivo or culture medium in vitro) such as fibronectin (FN), vitronectin (VN), fibrinogen (FG), representing the so-called soluble matrix proteins in the biological fluids (Grinnell 1986).

Keywords: Tissue Engineering, Protein-material interaction, ECM, Biomaterials

Lacroix, D., Planell, J. A., Prendergast, P. J., (2009). Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences , 367, (1895), 1993-2009

Scaffold biomaterials for tissue engineering can be produced in many different ways depending on the applications and the materials used. Most research into new biomaterials is based on an experimental trial-and-error approach that limits the possibility of making many variations to a single material and studying its interaction with its surroundings. Instead, computer simulation applied to tissue engineering can offer a more exhaustive approach to test and screen out biomaterials. In this paper, a review of the current approach in biomaterials designed through computer-aided design (CAD) and through finite-element modelling is given. First we review the approach used in tissue engineering in the development of scaffolds and the interactions existing between biomaterials, cells and mechanical stimuli. Then, scaffold fabrication through CAD is presented and characterization of existing scaffolds through computed images is reviewed. Several case studies of finite-element studies in tissue engineering show the usefulness of computer simulations in determining the mechanical environment of cells when seeded into a scaffold and the proper design of the geometry and stiffness of the scaffold. This creates a need for more advanced studies that include aspects of mechanobiology in tissue engineering in order to be able to predict over time the growth and differentiation of tissues within scaffolds. Finally, current perspectives indicate that more efforts need to be put into the development of such advanced studies, with the removal of technical limitations such as computer power and the inclusion of more accurate biological and genetic processes into the developed algorithms.

Keywords: Biomechanics, Tissue engineering, Biomaterials, Finite-element modelling

Rodriguez-Segui, S. A., Pla, M., Engel, E., Planell, J. A., Martinez, E., Samitier, J., (2009). Influence of fabrication parameters in cellular microarrays for stem cell studies Journal of Materials Science: Materials in Medicine , 20, (7), 1525-1533

Lately there has been an increasing interest in the development of tools that enable the high throughput analysis of combinations of surface-immobilized signaling factors and which examine their effect on stem cell biology and differentiation. These surface-immobilized factors function as artificial microenvironments that can be ordered in a microarray format. These microarrays could be useful for applications such as the study of stem cell biology to get a deeper understanding of their differentiation process. Here, the evaluation of several key process parameters affecting the cellular microarray fabrication is reported in terms of its effects on the mesenchymal stem cell culture time on these microarrays. Substrate and protein solution requirements, passivation strategies and cell culture conditions are investigated. The results described in this article serve as a basis for the future development of cellular microarrays aiming to provide a deeper understanding of the stem cell differentiation process.

Keywords: Bone-marrow, Protein microarrays, Progenitor cells, Differentiation, Surfaces, Growth, Biomaterials, Commitment, Pathways, Culture media

Baccar, Z. M., Hidouri, S., El Bari, N., Jaffrezic-Renault, N., Errachid, A., Zine, N., (2009). Stable immobilization of anti-beta casein antibody onto layered double hydroxides materials for biosensor applications Sensor Letters 6th Maghreb-Europe Meeting on Materials and Their Applications for Devices and Physical, Chemical and Biological Sensors , AMER SCIENTIFIC PUBLISHERS (Rabat, Morocco) 7, (5), 647-655

This review presents the development of new kind of antibody/LDH (layered double hydroxides) hybrid nanomaterials for beta casein detection. The preparation method of the LDH is described. It is based on the co-precipitation of metallic salts in constant pH and temperature. The chosen LDH are hydrotalcites (Mg2AICO3, Mg3AICO3), Zaccagnaite: Zn2AICO3 and hydrocalumite: Ca 2AICI. Finally, the antibody is immobilized into the LDH materials using Layer-by-Layer method by autoassembly. In this work, we studied the surface properties of the prepared hybrid biomembranes using X-ray diffraction, Infrared spectroscopy in ATR mode and Atomic Force Microscopy (AFM). These techniques allow describing the antibody immobilization and its interactions with LDH. The antibody was adsorbed and its morphology was conserved in its new environment after more than 15 days continuously in PBS solution, promising a constant biosensor performance.

Keywords: Anti β-casein antibody, Antibody immobilization, Ldh hybrid biomaterials, Urea biosensors

Navarro, M., Michiardi, A., Castano, O., Planell, J. A., (2008). Biomaterials in orthopaedics Journal of the Royal Society Interface , 5, (27), 1137-1158

At present, strong requirements in orthopaedics are still to be met, both in bone and joint substitution and in the repair and regeneration of bone defects. In this framework, tremendous advances in the biomaterials field have been made in the last 50 years where materials intended for biomedical purposes have evolved through three different generations, namely first generation (bioinert materials), second generation (bioactive and biodegradable materials) and third generation (materials designed to stimulate specific responses at the molecular level). In this review, the evolution of different metals, ceramics and polymers most commonly used in orthopaedic applications is discussed, as well as the different approaches used to fulfil the challenges faced by this medical field.

Keywords: Biomaterials, Orthopaedics, Tissue engineering, Bioactive materials, Biodegradable materials, Bioinert materials