Publications

by Keyword: Cell death


By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Badia, M., Bolognesi, B., (2021). Assembling the right type of switch: Protein condensation to signal cell death Current Opinion in Cell Biology 69, 55-61

Protein phase transitions are particularly amenable for cell signalling as these highly cooperative processes allow cells to make binary decisions in response to relatively small intracellular changes. The different processes of condensate formation and the distinct material properties of the resulting condensates provide a dictionary to modulate a range of decisions on cell fate. We argue that, on the one hand, the reversibility of liquid demixing offers a chance to arrest cell growth under specific circumstances. On the other hand, the transition to amyloids is better suited for terminal decisions such as those leading to apoptosis and necrosis. Here, we review recent examples of both scenarios, highlighting how mutations in signalling proteins affect the formation of biomolecular condensates with drastic effects on cell survival.

Keywords: Amyloid, Cell death, Deep mutagenesis, LLPS, RNA-binding proteins


Nicolas, O., Gavin, R., Del Rio, J. A., (2009). New insights into cellular prion protein (PrPc) functions: The "ying and yang" of a relevant protein Brain Research Reviews , 61, (2), 170-184

The conversion of cellular prion protein (PrPc) a GPI-anchored protein, into a protease-K-resistant and infective form (generally termed PrPsc) is mainly responsible for Transmissible Spongiform Encephalopathies (TSEs), characterized by neuronal degeneration and progressive loss of basic brain functions. Although PrPc is expressed by a wide range of tissues throughout the body, the complete repertoire of its functions has not been fully deter-mined. Recent studies have confirmed its participation in basic physiological processes such as cell proliferation and the regulation of cellular homeostasis. Other studies indicate that PrPc interacts with several molecules to activate signaling cascades with a high number of cellular effects. To deter-mine PrPc functions, transgenic mouse models have been generated in the last decade. In particular, mice lacking specific domains of the PrPc protein have revealed the contribution of these domains to neurodegenerative processes. A dual role of PrPc has been shown, since most authors report protective roles for this protein while others describe pro-apoptotic functions. in this review, we summarize new findings on PrPc functions, especially those related to neural degeneration and cell signaling.

Keywords: Prion, Doppel, Shadoo, Cell death, Cell proliferation, Cell differentiation