Publications

by Keyword: Flexible


By year:[ 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Fontana-Escartin A, Puiggalí-Jou A, Lanzalaco S, Bertran O, Alemán C, (2021). Manufactured Flexible Electrodes for Dopamine Detection: Integration of Conducting Polymer in 3D-Printed Polylactic Acid ADVANCED ENGINEERING MATERIALS 23

Flexible electrochemical sensors based on electroactive materials have emerged as powerful analytical tools for biomedical applications requiring bioanalytes detection. Within this context, 3D printing is a remarkable technology for developing electrochemical devices, due to no design constraints, waste minimization, and batch manufacturing with high reproducibility. However, the fabrication of 3D printed electrodes is still limited by the in-house fabrication of conductive filaments, which requires the mixture of the electroactive material with melted of thermoplastic polymer (e.g., polylactic acid, PLA). Herein, a simple approach is presented for preparing electrochemical dopamine (DA) biosensors. Specifically, the surface of 3D-printed PLA specimens, which exhibit an elastic modulus and a tensile strength of 3.7 +/- 0.3 GPa and 47 +/- 1 MPa, respectively, is activated applying a 0.5 m NaOH solution for 30 min and, subsequently, poly(3,4-ethylenedioxythiophene) is polymerized in situ using aqueous solvent. The detection of DA with the produced sensors has been demonstrated by cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. In summary, the obtained results reflect that low-cost electrochemical sensors, which are widely used in medicine and biotechnology, can be rapidly fabricated using the proposed approach that, although based on additive manufacturing, does not require the preparation of conductive filaments.

Keywords: 3d printers, Additive manufacturing, Amines, Batch manufacturing, Biomedical applications, Chronoamperometry, Conducting polymer, Conducting polymers, Conductive filaments, Conservation, Cyclic voltammetry, Differential pulse voltammetry, Electroactive material, Electrochemical biosensor, Electrochemical devices, Electrochemical sensors, Electrodes, Electron emission, Flexible electrode, High reproducibility, Medical applications, Neurophysiology, Poly-3 ,4-ethylenedioxythiophene, Polyesters, Polylactic aci, Sodium hydroxide, Tensile strength, Thermoplastic polymer


Ruano G, Iribarren JI, Pérez-Madrigal MM, Torras J, Alemán C, (2021). Electrical and capacitive response of hydrogel solid-like electrolytes for supercapacitors Polymers 13,

Flexible hydrogels are attracting significant interest as solid-like electrolytes for energy storage devices, especially for supercapacitors, because of their lightweight and anti-deformation features. Here, we present a comparative study of four ionic conductive hydrogels derived from biopolymers and doped with 0.1 M NaCl. More specifically, such hydrogels are constituted by κcarrageenan (κC), carboxymethyl cellulose (CMC), poly-γ-glutamic acid (PGGA) or a phenylalaninecontaining polyesteramide (PEA). After examining the morphology and the swelling ratio of the four hydrogels, which varies between 483% and 2356%, their electrical and capacitive behaviors were examined using electrochemical impedance spectroscopy. Measurements were conducted on devices where a hydrogel film was sandwiched between two identical poly(3,4-ethylenedioxythiophene) electrodes. The bulk conductivity of the prepared doped hydrogels is 76, 48, 36 and 34 mS/cm for PEA, PGGA, κC and CMC, respectively. Overall, the polyesteramide hydrogel exhibits the most adequate properties (i.e., low electrical resistance and high capacitance) to be used as semi-solid electrolyte for supercapacitors, which has been attributed to its distinctive structure based on the homogeneous and abundant distribution of both micro-and nanopores. Indeed, the morphology of the polyestermide hydrogel reduces the hydrogel resistance, enhances the transport of ions, and results in a better interfacial contact between the electrodes and solid electrolyte. The correlation between the supercapacitor performance and the hydrogel porous morphology is presented as an important design feature for the next generation of light and flexible energy storage devices for wearable electronics.

Keywords: biopolymers, electrochemical impedance spectroscopy, flexible hydrogels, supercapacitor, Biopolymers, Electrochemical impedance spectroscopy, Flexible hydrogels, Supercapacitor


Molina BG, del Valle LJ, Casanovas J, Lanzalaco S, Pérez-Madrigal MM, Turon P, Armelin E, Alemán C, (2021). Plasma-Functionalized Isotactic Polypropylene Assembled with Conducting Polymers for Bacterial Quantification by NADH Sensing Advanced Healthcare Materials 10

Rapid detection of bacterial presence on implantable medical devices is essential to prevent biofilm formation, which consists of densely packed bacteria colonies able to withstand antibiotic-mediated killing. In this work, a smart approach is presented to integrate electrochemical sensors for detecting bacterial infections in biomedical implants made of isotactic polypropylene (i-PP) using chemical assembly. The electrochemical detection is based on the capacity of conducting polymers (CPs) to detect extracellular nicotinamide adenine dinucleotide (NADH) released from cellular respiration of bacteria, which allows distinguishing prokaryotic from eukaryotic cells. Oxygen plasma-functionalized free-standing i-PP, coated with a layer (≈1.1 µm in thickness) of CP nanoparticles obtained by oxidative polymerization, is used as working electrode for the anodic polymerization of a second CP layer (≈8.2 µm in thickness), which provides very high electrochemical activity and stability. The resulting layered material, i-PP /CP , detects the electro-oxidation of NADH in physiological media with a sensitivity 417 µA cm and a detection limit up to 0.14 × 10 m, which is below the concentration of extracellular NADH found for bacterial cultures of biofilm-positive and biofilm-negative strains. f 2 −2 −3

Keywords: bacteria respiration, bacteria sensors, biomedical implants, flexible sensors, poly(3,4-ethylenedioxythiophene), Bacteria respiration, Bacteria sensors, Biomedical implants, Flexible sensors, Poly(3,4-ethylenedioxythiophene)


Saborío, M. G., Svelic, P., Casanovas, J., Ruano, G., Pérez-Madrigal, M. M., Franco, L., Torras, J., Estrany, F., Alemán, C., (2019). Hydrogels for flexible and compressible free standing cellulose supercapacitors European Polymer Journal 118, 347-357

Cellulose-based supercapacitors display important advantages in comparison with devices fabricated with other materials, regarding environmental friendliness, flexibility, cost and versatility. Recent progress in the field has been mainly focused on the utilization of cellulose fibres as: structural mechanical reinforcement of electrodes; precursors of electrically active carbon-based materials; or primary electrolytes that act as reservoirs of secondary electrolytes. In this work, a flexible, lightweight, robust, portable and manageable all-carboxymethyl cellulose symmetric supercapacitor has been obtained by assembling two electrodes based on carboxymethyl cellulose hydrogels to a solid electrolytic medium formulated with the same material. Hydrogels, which were made by cross-linking carboxymethyl cellulose paste with citric acid in water, rendered not only effective solid electrolytic media by simply loading NaCl but also electroactive electrodes. For the latter, conducting polymer microparticles, which were loaded into the hydrogel network during the physical cross-linking step, were appropriately connected through the in situ anodic polymerization of a similar conducting polymer in aqueous medium, thus creating conduction paths. The performance of the assembled supercapacitors has been proved by cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy. This design opens a new window for the green and mass production of flexible cellulose-based supercapacitors.

Keywords: Conducting polymer, Energy storage, Flexible electrodes, In situ polymerization, Wearable electronics


Seo, K. D., Kwak, B. K., Sánchez, S., Kim, D. S., (2015). Microfluidic-assisted fabrication of flexible and location traceable organo-motor IEEE Transactions on Nanobioscience , 14, (3), 298-304

In this paper, we fabricate a flexible and location traceable micromotor, called organo-motor, assisted by microfluidic devices and with high throughput. The organo-motors are composed of organic hydrogel material, poly (ethylene glycol) diacrylate (PEGDA), which can provide the flexibility of their structure. For spatial and temporal traceability of the organo-motors under magnetic resonance imaging (MRI), superparamagnetic iron oxide nanoparticles (SPION; Fe3O4) were incorporated into the PEGDA microhydrogels. Furthermore, a thin layer of platinum (Pt) was deposited onto one side of the SPION-PEGDA microhydrogels providing geometrical asymmetry and catalytic propulsion in aqueous fluids containing hydrogen peroxide solution, H2O2. Furthermore, the motion of the organo-motor was controlled by a small external magnet enabled by the presence of SPION in the motor architecture.

Keywords: Flexible, Hydrogel, Magnetic resonance imaging, Microfluidics, Micromotor, Microparticle, Organo-motor, Poly (ethylene glycol) diacrylate, Self-propulsion, Superparamagnetic iron oxide nanoparticles