by Keyword: ICP

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Puiggalí-Jou, A., del Valle, L. J., Alemán, C., (2019). Drug delivery systems based on intrinsically conducting polymers Journal of Controlled Release 309, 244-264

This work provides an overview of the up to date research related to intrinsically conducting polymers (ICPs) and their function as novel drug delivery systems (DDSs). Drugs administrated to patients do not always reach the targeted organ, which may affect other tissues leading to undesired side-effects. To overcome these problems, DDSs are under development. Nowadays, it is possible to target the administration and, most importantly, to achieve a controlled drug dosage upon external stimuli. Particularly, the attention of this work focuses on the drug release upon electrical stimuli employing ICPs. These are well-known organic polymers with outstanding electrical properties similar to metals but also retaining some advantageous characteristics normally related to polymers, like mechanical stability and easiness of processing. Depending on the redox state, ICPs can incorporate or release anionic or cationic molecules on-demand. Besides, the releasing rate can be finely tuned by the type of electrical stimulation applied. Another interesting feature is that ICPs are capable to sense redox molecules such as dopamine, serotonin or ascorbic acid among others. Therefore, future prospects go towards the design of materials where the releasing rate could be self-adjusted in response to changes in the surrounding environment. This recompilation of ideas and projects provides a critic outline of ICPs synthesis progress related to their use as DDSs. Definitely, ICPs are a very promising branch of DDSs where the dose can be finely tuned by the exertion of an external stimulus, hence optimizing the repercussions of the drug and diminishing its side effects.

Keywords: Controlled release, DDS, Drug delivery, Electrical stimuli, ICP, Intrinsically conducting polymers