Publications

by Keyword: In-vitro


By year:[ 2022 | 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Macedo, MH, Barros, AS, Martinez, E, Barrias, CC, Sarmento, B, (2022). All layers matter: Innovative three-dimensional epithelium-stroma-endothelium intestinal model for reliable permeability outcomes Journal Of Controlled Release 341, 414-430

Drug development is an ever-growing field, increasingly requesting reliable in vitro tools to speed up early screening phases, reducing the need for animal experiments. In oral delivery, understanding the absorption pattern of a new drug in the small intestine is paramount. Classical two-dimensional (2D) in vitro models are generally too simplistic and do not accurately represent native tissues. The main goal of this work was to develop an advanced three-dimensional (3D) in vitro intestinal model to test absorption in a more reliable manner, by better mimicking the native environment. The 3D model is composed of a collagen-based stromal layer with embedded fibroblasts mimicking the intestinal lamina propria and providing support for the epithelium, composed of enterocytes and mucus-secreting cells. An endothelial layer, surrogating the absorptive capillary network, is also present. The cellular crosstalk between the different cells present in the model is unveiled, disclosing key players, namely those involved in the contraction of collagen by fibroblasts. The developed 3D model presents lower levels of P-glycoprotein (P-gp) and Multidrug Resistance Protein 2 (MRP2) efflux transporters, which are normally overexpressed in traditional Caco-2 models, and are paramount in the absorption of many compounds. This, allied with transepithelial electrical resistance (TEER) values closer to physiological ranges, leads to improved and more reliable permeability outcomes, which are observed when comparing our results with in vivo data.

Keywords: 3d intestinal model, 3d modeling, 3d models, 3d-modeling, Alkaline-phosphatase, Animal experiments, Biopharmaceutics classification, Caco-2 cells, Cell culture, Collagen, Collagen gel, Drug absorption, Drug development, Endothelium, Fibroblasts, Glycoproteins, Hydrogel, In-vitro, Matrix metalloproteinases, Membrane-permeability, Paracellular transport, Permeability, Single-pass vs., Speed up


Gouveia, Virgínia M., Rizzello, Loris, Vidal, Bruno, Nunes, Claudia, Poma, Alessandro, Lopez?Vasquez, Ciro, Scarpa, Edoardo, Brandner, Sebastian, Oliveira, António, Fonseca, João E., Reis, Salette, Battaglia, Giuseppe, (2022). Targeting Macrophages and Synoviocytes Intracellular Milieu to Augment Anti-Inflammatory Drug Potency Advanced Therapeutics 5, 2100167

Ojosnegros, S, Seriola, A, Godeau, AL, Veiga, A, (2021). Embryo implantation in the laboratory: an update on current techniques Human Reproduction Update 27, 501-530

BACKGROUND: The embryo implantation process is crucial for the correct establishment and progress of pregnancy. During implantation, the blastocyst trophectoderm cells attach to the epithelium of the endometrium, triggering intense cell-to-cell crosstalk that leads to trophoblast outgrowth, invasion of the endometrial tissue, and formation of the placenta. However, this process, which is vital for embryo and foetal development in utero, is still elusive to experimentation because of its inaccessibility. Experimental implantation is cumbersome and impractical in adult animal models and is inconceivable in humans. OBJECTIVE AND RATIONALE: A number of custom experimental solutions have been proposed to recreate different stages of the implantation process in vitro, by combining a human embryo (or a human embryo surrogate) and endometrial cells (or a surrogate for the endometrial tissue). In vitro models allow rapid high-throughput interrogation of embryos and cells, and efficient screening of molecules, such as cytokines, drugs, or transcription factors, that control embryo implantation and the receptivity of the endometrium. However, the broad selection of available in vitro systems makes it complicated to decide which system best fits the needs of a specific experiment or scientific question. To orient the reader, this review will explore the experimental options proposed in the literature, and classify them into amenable categories based on the embryo/cell pairs employed. The goal is to give an overview of the tools available to study the complex process of human embryo implantation, and explain the differences between them, including the advantages and disadvantages of each system. SEARCH METHODS: We performed a comprehensive review of the literature to come up with different categories that mimic the different stages of embryo implantation in vitro, ranging from initial blastocyst apposition to later stages of trophoblast invasion or gastrulation. We will also review recent breakthrough advances on stem cells and organoids, assembling embryo-like structures and endometrial tissues. OUTCOMES: We highlight the most relevant systems and describe the most significant experiments. We focus on in vitro systems that have contributed to the study of human reproduction by discovering molecules that control implantation, including hormones, signalling molecules, transcription factors and cytokines. WIDER IMPLICATIONS: The momentum of this field is growing thanks to the use of stem cells to build embryo-like structures and endometrial tissues, and the use of bioengineering to extend the life of embryos in culture. We propose to merge bioengineering methods derived from the fields of stem cells and reproduction to develop new systems covering a wider window of the implantation process.

Keywords: in vitro models, blastocyst, blastocyst-like structures, early-pregnancy, endometrial cells, epidermal-growth-factor, gene-expression, implantation, in vitro models, in-vitro model, indian hedgehog, organoids, receptivity, self-organization, spheroids, trophoblast, trophoblast invasion, uterine receptivity, Blastocyst, Blastocyst-like structures, Early-pregnancy, Endometrial cells, Endometrial stromal cells, Epidermal-growth-factor, Gene-expression, Implantation, In vitro models, In-vitro model, Indian hedgehog, Organoids, Receptivity, Self-organization, Spheroids, Trophoblast, Trophoblast invasion, Uterine receptivity


Konka, J, Espanol, M, Bosch, BM, de Oliveira, E, Ginebra, MP, (2021). Maturation of biomimetic hydroxyapatite in physiological fluids: a physicochemical and proteomic study Materials Today Bio 12, 100137

Biomimetic calcium-deficient hydroxyapatite (CDHA) as a bioactive material exhibits exceptional intrinsic osteoinductive and osteogenic properties because of its nanostructure and composition, which promote a favorable microenvironment. Its high reactivity has been hypothesized to play a relevant role in the in vivo performance, mediated by the interaction with the biological fluids, which is amplified by its high specific surface area. Paradoxically, this high reactivity is also behind the in vitro cytotoxicity of this material, especially pro-nounced in static conditions. The present work explores the structural and physicochemical changes that CDHA undergoes in contact with physiological fluids and to investigate its interaction with proteins. Calcium-deficient hydroxyapatite discs with different micro/nanostructures, coarse (C) and fine (F), were exposed to cell-free complete culture medium over extended periods of time: 1, 7, 14, 21, 28, and 50 days. Precipitate formation was not observed in any of the materials in contact with the physiological fluid, which would indicate that the ionic exchanges were linked to incorporation into the crystal structure of CDHA or in the hydrated layer. In fact, CDHA experienced a maturation process, with a progressive increase in crystallinity and the Ca/P ratio, accompanied by an uptake of Mg and a B-type carbonation process, with a gradual propagation into the core of the samples. However, the reactivity of biomimetic hydroxyapatite was highly dependent on the specific surface area and was amplified in nanosized needle-like crystal structures (F), whereas in coarse specimens the ionic exchanges were restricted to the surface, with low penetration in the material bulk. In addition to showing a higher protein adsorption on F substrates, the proteomics study revealed the existence of protein selectivity to-ward F or C microstructures, as well as the capability of CDHA, and more remarkably of F-CDHA, to concentrate specific proteins from the culture medium. Finally, a substantial improvement in the material's ability to support cell proliferation was observed after the CDHA maturation process.

Keywords: Biological-systems, Biomaterials, Biomimetic hydroxyapatites, Biomimetics, Bone-formation, Calcium deficient hydroxyapatite, Calcium phosphate, Calcium phosphates, Cell proliferation, Crystal structure, Crystallinity, Crystals structures, Culture medium, Growth, High reactivity, Hydroxyapatite, In-vitro, Ion exchange, Ionic exchange, Molecular biology, Nanocrystalline apatites, Nanostructure, Nanostructures, Octacalcium phosphate, Physicochemical studies, Physiological fluids, Physiology, Protein adsorption, Proteins, Proteomic studies, Raman spectroscopy, Serum-albumin, Specific surface area


Brennan M, Monahan DS, Brulin B, Gallinetti S, Humbert P, Tringides C, Canal C, Ginebra MP, Layrolle P, (2021). Biomimetic versus sintered macroporous calcium phosphate scaffolds enhanced bone regeneration and human mesenchymal stromal cell engraftment in calvarial defects Acta Biomaterialia 135, 689-704

In contrast to sintered calcium phosphates (CaPs) commonly employed as scaffolds to deliver mesenchymal stromal cells (MSCs) targeting bone repair, low temperature setting conditions of calcium deficient hydroxyapatite (CDHA) yield biomimetic topology with high specific surface area. In this study, the healing capacity of CDHA administering MSCs to bone defects is evaluated for the first time and compared with sintered beta-tricalcium phosphate (β-TCP) constructs sharing the same interconnected macroporosity. Xeno-free expanded human bone marrow MSCs attached to the surface of the hydrophobic β-TCP constructs, while infiltrating the pores of the hydrophilic CDHA. Implantation of MSCs on CaPs for 8 weeks in calvaria defects of nude mice exhibited complete healing, with bone formation aligned along the periphery of β-TCP, and conversely distributed within the pores of CDHA. Human monocyte-osteoclast differentiation was inhibited in vitro by direct culture on CDHA compared to β-TCP biomaterials and indirectly by administration of MSC-conditioned media generated on CDHA, while MSCs increased osteoclastogenesis in both CaPs in vivo. MSC engraftment was significantly higher in CDHA constructs, and also correlated positively with bone in-growth in scaffolds. These findings demonstrate that biomimetic CDHA are favorable carriers for MSC therapies and should be explored further towards clinical bone regeneration strategies. Statement of significance: Delivery of mesenchymal stromal cells (MSCs) on calcium phosphate (CaP) biomaterials enhances reconstruction of bone defects. Traditional CaPs are produced at high temperature, but calcium deficient hydroxyapatite (CDHA) prepared at room temperature yields a surface structure more similar to native bone mineral. The objective of this study was to compare the capacity of biomimetic CDHA scaffolds with sintered β-TCP scaffolds for bone repair mediated by MSCs for the first time. In vitro, greater cell infiltration occurred in CDHA scaffolds and following 8 weeks in vivo, MSC engraftment was higher in CDHA compared to β-TCP, as was bone in-growth. These findings demonstrate the impact of material features such as surface structure, and highlight that CDHA should be explored towards clinical bone regeneration strategies.

Keywords: beta-tricalcium phosphate, bone regeneration, differentiation, engraftment, human bone marrow mesenchymal stromal cells, hydroxyapatite scaffolds, in-vitro, inhibition, osteogenesis, osteoinduction, stem-cells, surface-topography, tissue, Beta-tricalcium phosphate, Bone regeneration, Calcium deficient hydroxyapatite, Engraftment, Human bone marrow mesenchymal stromal cells


Soblechero-Martín P, Albiasu-Arteta E, Anton-Martinez A, de la Puente-Ovejero L, Garcia-Jimenez I, González-Iglesias G, Larrañaga-Aiestaran I, López-Martínez A, Poyatos-García J, Ruiz-Del-Yerro E, Gonzalez F, Arechavala-Gomeza V, (2021). Duchenne muscular dystrophy cell culture models created by CRISPR/Cas9 gene editing and their application in drug screening Scientific Reports 11, 18188

Gene editing methods are an attractive therapeutic option for Duchenne muscular dystrophy, and they have an immediate application in the generation of research models. To generate myoblast cultures that could be useful in in vitro drug screening, we have optimised a CRISPR/Cas9 gene edition protocol. We have successfully used it in wild type immortalised myoblasts to delete exon 52 of the dystrophin gene, modelling a common Duchenne muscular dystrophy mutation; and in patient’s immortalised cultures we have deleted an inhibitory microRNA target region of the utrophin UTR, leading to utrophin upregulation. We have characterised these cultures by demonstrating, respectively, inhibition of dystrophin expression and overexpression of utrophin, and evaluating the expression of myogenic factors (Myf5 and MyH3) and components of the dystrophin associated glycoprotein complex (α-sarcoglycan and β-dystroglycan). To demonstrate their use in the assessment of DMD treatments, we have performed exon skipping on the DMDΔ52-Model and have used the unedited DMD cultures/ DMD-UTRN-Model combo to assess utrophin overexpression after drug treatment. While the practical use of DMDΔ52-Model is limited to the validation to our gene editing protocol, DMD-UTRN-Model presents a possible therapeutic gene edition target as well as a useful positive control in the screening of utrophin overexpression drugs.

Keywords: expression, in-vitro, mouse model, muscle, mutations, phenotype, quantification, sarcolemma, therapy, Utrophin up-regulation


Rial-Hermida MI, Rey-Rico A, Blanco-Fernandez B, Carballo-Pedrares N, Byrne EM, Mano JF, (2021). Recent Progress on Polysaccharide-Based Hydrogels for Controlled Delivery of Therapeutic Biomolecules Acs Biomaterials Science & Engineering 7, 4102-4127

A plethora of applications using polysaccharides have been developed in recent years due to their availability as well as their frequent nontoxicity and biodegradability. These polymers are usually obtained from renewable sources or are byproducts of industrial processes, thus, their use is collaborative in waste management and shows promise for an enhanced sustainable circular economy. Regarding the development of novel delivery systems for biotherapeutics, the potential of polysaccharides is attractive for the previously mentioned properties and also for the possibility of chemical modification of their structures, their ability to form matrixes of diverse architectures and mechanical properties, as well as for their ability to maintain bioactivity following incorporation of the biomolecules into the matrix. Biotherapeutics, such as proteins, growth factors, gene vectors, enzymes, hormones, DNA/RNA, and antibodies are currently in use as major therapeutics in a wide range of pathologies. In the present review, we summarize recent progress in the development of polysaccharide-based hydrogels of diverse nature, alone or in combination with other polymers or drug delivery systems, which have been implemented in the delivery of biotherapeutics in the pharmaceutical and biomedical fields. © 2021 American Chemical Society.

Keywords: biodegradable dextran hydrogels, bone morphogenetic protein-2, carrageenan-based hydrogels, chitosan-based hydrogels, controlled delivery, controlled-release, cross-linked hydrogels, growth-factor delivery, hydrogels, in-vitro characterization, polysaccharides, self-healing hydrogel, stimuli-responsiveness, tissue engineering, Antibodies, Bioactivity, Biodegradability, Biomedical fields, Biomolecules, Biotherapeutics, Chemical modification, Circular economy, Controlled delivery, Controlled drug delivery, Delivery systems, Drug delivery system, Functional polymers, Hyaluronic-acid hydrogels, Hydrogels, Industrial processs, Polysaccharides, Recent progress, Renewable sources, Stimuli-responsiveness, Targeted drug delivery, Tissue engineering, Waste management


Hamouda I, Labay C, Cvelbar U, Ginebra MP, Canal C, (2021). Selectivity of direct plasma treatment and plasma-conditioned media in bone cancer cell lines Scientific Reports 11, 17521

Atmospheric pressure plasma jets have been shown to impact several cancer cell lines, both in vitro and in vivo. These effects are based on the biochemistry of the reactive oxygen and nitrogen species generated by plasmas in physiological liquids, referred to as plasma-conditioned liquids. Plasma-conditioned media are efficient in the generation of reactive species, inducing selective cancer cell death. However, the concentration of reactive species generated by plasma in the cell culture media of different cell types can be highly variable, complicating the ability to draw precise conclusions due to the differential sensitivity of different cells to reactive species. Here, we compared the effects of direct and indirect plasma treatment on non-malignant bone cells (hOBs and hMSCs) and bone cancer cells (SaOs-2s and MG63s) by treating the cells directly or exposing them to previously treated cell culture medium. Biological effects were correlated with the concentrations of reactive species generated in the liquid. A linear increase in reactive species in the cell culture medium was observed with increased plasma treatment time independent of the volume treated. Values up to 700 µM for H2O2 and 140 µM of NO2− were attained in 2 mL after 15 min of plasma treatment in AdvDMEM cell culture media. Selectivity towards bone cancer cells was observed after both direct and indirect plasma treatments, leading to a decrease in bone cancer cell viability at 72 h to 30% for the longest plasma treatment times while maintaining the survival of non-malignant cells. Therefore, plasma-conditioned media may represent the basis for a potentially novel non-invasive technique for bone cancer therapy.

Keywords: expression, in-vitro, jet, mechanisms, nitrate, nitrite, osteosarcoma cells, reactive oxygen, Cold atmospheric plasma


Berishvili E, Casiraghi F, Amarelli C, Scholz H, Piemonti L, Berney T, Montserrat N, (2021). Mini-organs forum: how to advance organoid technology to organ transplant community Transplant International 34, 1588-1593

The generation of human mini-organs, the so-called organoids, is one of the biggest scientific advances in regenerative medicine. This technology exploits traditional three-dimensional culture techniques that support cell-autonomous self-organization responses of stem cells to derive micrometer to millimeter size versions of human organs. The convergence of the organoid technology with organ transplantation is still in its infancy but this alliance is expected to open new venues to change the way we conduct both transplant and organoid research. In this Forum we provide a summary on early achievements facilitating organoid derivation and culture. We further discuss on early advances of organoid transplantation also offering a comprehensive overview of current limitations and challenges to instruct organoid maturation. We expect that this Forum sets the ground for initial discussions between stem cell biologists, bioengineers, and the transplant community to better direct organoid basic research to advance the organ transplantation field.

Keywords: in-vitro, matrix, mice, organoids, regenerative medicine, vivo, Intestinal stem-cell, Organoids, Regenerative medicine


Blanco-Cabra N, López-Martínez MJ, Arévalo-Jaimes BV, Martin-Gómez MT, Samitier J, Torrents E, (2021). A new BiofilmChip device for testing biofilm formation and antibiotic susceptibility Npj Biofilms And Microbiomes 7, 62

Currently, three major circumstances threaten the management of bacterial infections: increasing antimicrobial resistance, expansion of chronic biofilm-associated infections, and lack of an appropriate approach to treat them. To date, the development of accelerated drug susceptibility testing of biofilms and of new antibiofouling systems has not been achieved despite the availability of different methodologies. There is a need for easy-to-use methods of testing the antibiotic susceptibility of bacteria that form biofilms and for screening new possible antibiofilm strategies. Herein, we present a microfluidic platform with an integrated interdigitated sensor (BiofilmChip). This new device allows an irreversible and homogeneous attachment of bacterial cells of clinical origin, even directly from clinical specimens, and the biofilms grown can be monitored by confocal microscopy or electrical impedance spectroscopy. The device proved to be suitable to study polymicrobial communities, as well as to measure the effect of antimicrobials on biofilms without introducing disturbances due to manipulation, thus better mimicking real-life clinical situations. Our results demonstrate that BiofilmChip is a straightforward tool for antimicrobial biofilm susceptibility testing that could be easily implemented in routine clinical laboratories.

Keywords: cells, model, resistance, shear, technology, In-vitro


Villasante A, Robinson ST, Cohen AR, Lock R, Guo XE, Vunjak-Novakovic G, (2021). Human Serum Enhances Biomimicry of Engineered Tissue Models of Bone and Cancer Frontiers In Bioengineering And Biotechnology 9, 658472

For decades, fetal bovine serum (FBS) has been used routinely for culturing many cell types, based on its empirically demonstrated effects on cell growth, and the lack of suitable non-xenogeneic alternatives. The FBS-based culture media do not represent the human physiological conditions, and can compromise biomimicry of preclinical models. To recapitulate in vitro the features of human bone and bone cancer, we investigated the effects of human serum and human platelet lysate on modeling osteogenesis, osteoclastogenesis, and bone cancer in two-dimensional (2D) and three-dimensional (3D) settings. For monitoring tumor growth within tissue-engineered bone in a non-destructive fashion, we generated cancer cell lines expressing and secreting luciferase. Culture media containing human serum enhanced osteogenesis and osteoclasts differentiation, and provided a more realistic in vitro mimic of human cancer cell proliferation. When human serum was used for building 3D engineered bone, the tissue recapitulated bone homeostasis and response to bisphosphonates observed in native bone. We found disparities in cell behavior and drug responses between the metastatic and primary cancer cells cultured in the bone niche, with the effectiveness of bisphosphonates observed only in metastatic models. Overall, these data support the utility of human serum for bioengineering of bone and bone cancers.

Keywords: 3d cancer models, 3rs, alpha tnf-alpha, culture, cypridina luciferase, ewings-sarcoma, ewing’s sarcoma, human platelet lysate, human serum, human tumor, in-vitro, osteogenic differentiation, stem-cells, zoledronic acid, 3d cancer models, 3rs, Cypridina luciferase, Ewing's sarcoma, Ewing’s sarcoma, Fetal bovine serum, Human serum


Falcones B, Sanz-Fraile H, Marhuenda E, Mendizábal I, Cabrera-Aguilera I, Malandain N, Uriarte JJ, Almendros I, Navajas D, Weiss DJ, Farré R, Otero J, (2021). Bioprintable lung extracellular matrix hydrogel scaffolds for 3d culture of mesenchymal stromal cells Polymers 13,

Mesenchymal stromal cell (MSC)-based cell therapy in acute respiratory diseases is based on MSC secretion of paracrine factors. Several strategies have proposed to improve this are being explored including pre-conditioning the MSCs prior to administration. We here propose a strategy for improving the therapeutic efficacy of MSCs based on cell preconditioning by growing them in native extracellular matrix (ECM) derived from the lung. To this end, a bioink with tunable stiffness based on decellularized porcine lung ECM hydrogels was developed and characterized. The bioink was suitable for 3D culturing of lung-resident MSCs without the need for additional chemical or physical crosslinking. MSCs showed good viability, and contraction assays showed the existence of cell–matrix interactions in the bioprinted scaffolds. Adhesion capacity and length of the focal adhesions formed were increased for the cells cultured within the lung hydrogel scaffolds. Also, there was more than a 20-fold increase of the expression of the CXCR4 receptor in the 3D-cultured cells compared to the cells cultured in plastic. Secretion of cytokines when cultured in an in vitro model of lung injury showed a decreased secretion of pro-inflammatory mediators for the cells cultured in the 3D scaffolds. Moreover, the morphology of the harvested cells was markedly different with respect to conventionally (2D) cultured MSCs. In conclusion, the developed bioink can be used to bioprint structures aimed to improve preconditioning MSCs for therapeutic purposes.

Keywords: 3d bioprinting, acute lung injury, adhesion, collagen, differentiation, dimension, elastic properties, extracellular matrix, hydrogels, in-vitro, mechanical-properties, mesenchymal stromal cells, microenvironment, potentiate, tissue engineering, 3d bioprinting, Acute lung injury, Extracellular matrix, Hydrogels, Mesenchymal stromal cells, Stem-cells, Tissue engineering


Mares AG, Pacassoni G, Marti JS, Pujals S, Albertazzi L, (2021). Formulation of tunable size PLGA-PEG nanoparticles for drug delivery using microfluidic technology Plos One 16, e0251821

Amphiphilic block co-polymer nanoparticles are interesting candidates for drug delivery as a result of their unique properties such as the size, modularity, biocompatibility and drug loading capacity. They can be rapidly formulated in a nanoprecipitation process based on self-assembly, resulting in kinetically locked nanostructures. The control over this step allows us to obtain nanoparticles with tailor-made properties without modification of the co-polymer building blocks. Furthermore, a reproducible and controlled formulation supports better predictability of a batch effectiveness in preclinical tests. Herein, we compared the formulation of PLGA-PEG nanoparticles using the typical manual bulk mixing and a microfluidic chip-assisted nanoprecipitation. The particle size tunability and controllability in a hydrodynamic flow focusing device was demonstrated to be greater than in the manual dropwise addition method. We also analyzed particle size and encapsulation of fluorescent compounds, using the common bulk analysis and advanced microscopy techniques: Transmission Electron Microscopy and Total Internal Reflection Microscopy, to reveal the heterogeneities occurred in the formulated nanoparticles. Finally, we performed in vitro evaluation of obtained NPs using MCF-7 cell line. Our results show how the microfluidic formulation improves the fine control over the resulting nanoparticles, without compromising any appealing property of PLGA nanoparticle. The combination of microfluidic formulation with advanced analysis methods, looking at the single particle level, can improve the understanding of the NP properties, heterogeneities and performance.

Keywords: controlled-release, doxorubicin, encapsulation, functional nanoparticles, nanoprecipitation, pharmacokinetics, polymeric nanoparticles, shape, surface-chemistry, In-vitro


Cendra MdM, Torrents E, (2021). Pseudomonas aeruginosa biofilms and their partners in crime Biotechnology Advances 49, 107734

Pseudomonas aeruginosa biofilms and the capacity of the bacterium to coexist and interact with a broad range of microorganisms have a substantial clinical impact. This review focuses on the main traits of P. aeruginosa biofilms, such as the structural composition and regulatory networks involved, placing particular emphasis on the clinical challenges they represent in terms of antimicrobial susceptibility and biofilm infection clearance. Furthermore, the ability of P. aeruginosa to grow together with other microorganisms is a significant pathogenic attribute with clinical relevance; hence, the main microbial interactions of Pseudomonas are especially highlighted and detailed throughout this review. This article also explores the infections caused by single and polymicrobial biofilms of P. aeruginosa and the current models used to recreate them under laboratory conditions. Finally, the antimicrobial and antibiofilm strategies developed against P. aeruginosa mono and multispecies biofilms are detailed at the end of this review.

Keywords: aeruginosa models, antibiotic-resistance, antimicrobials, bacterial biofilms, biofilms, c-di-gmp, chronic infections, enterococcus-faecalis, extracellular dna, in-vitro, lectin pa-iil, p, p. aeruginosa models, polymicrobial, polymicrobial interactions, staphylococcus-aureus, Antimicrobials, Biofilms, Chronic infections, P. aeruginosa models, Polymicrobial, Pseudomonas aeruginosa, Urinary-tract-infection


Feiner-Gracia N, Glinkowska Mares A, Buzhor M, Rodriguez-Trujillo R, Samitier Marti J, Amir RJ, Pujals S, Albertazzi L, (2021). Real-Time Ratiometric Imaging of Micelles Assembly State in a Microfluidic Cancer-on-a-Chip Acs Applied Bio Materials 4, 669-681

© 2020 American Chemical Society. The performance of supramolecular nanocarriers as drug delivery systems depends on their stability in the complex and dynamic biological media. After administration, nanocarriers are challenged by physiological barriers such as shear stress and proteins present in blood, endothelial wall, extracellular matrix, and eventually cancer cell membrane. While early disassembly will result in a premature drug release, extreme stability of the nanocarriers can lead to poor drug release and low efficiency. Therefore, comprehensive understanding of the stability and assembly state of supramolecular carriers in each stage of delivery is the key factor for the rational design of these systems. One of the main challenges is that current 2D in vitro models do not provide exhaustive information, as they fail to recapitulate the 3D tumor microenvironment. This deficiency in the 2D model complexity is the main reason for the differences observed in vivo when testing the performance of supramolecular nanocarriers. Herein, we present a real-time monitoring study of self-assembled micelles stability and extravasation, combining spectral confocal microscopy and a microfluidic cancer-on-a-chip. The combination of advanced imaging and a reliable 3D model allows tracking of micelle disassembly by following the spectral properties of the amphiphiles in space and time during the crucial steps of drug delivery. The spectrally active micelles were introduced under flow and their position and conformation continuously followed by spectral imaging during the crossing of barriers, revealing the interplay between carrier structure, micellar stability, and extravasation. Integrating the ability of the micelles to change their fluorescent properties when disassembled, spectral confocal imaging and 3D microfluidic tumor blood vessel-on-a-chip resulted in the establishment of a robust testing platform suitable for real-time imaging and evaluation of supramolecular drug delivery carrier's stability.

Keywords: cancer-on-a-chip, complex, delivery, endothelial-cells, in-vitro, microfluidic, model, nanoparticle, penetration, shear-stress, stability, supramolecular, Cancer-on-a-chip, Cell-culture, Micelle, Microfluidic, Nanoparticle, Stability, Supramolecular


Garreta, Elena, Kamm, Roger D., Chuva de Sousa Lopes, Susana M., Lancaster, Madeline A., Weiss, Ron, Trepat, Xavier, Hyun, Insoo, Montserrat, Nuria, (2021). Rethinking organoid technology through bioengineering Nature Materials 20, 145-155

In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine. This Review provides an overview of bioengineering technologies that can be harnessed to facilitate the culture, self-organization and functionality of human pluripotent stem cell-derived organoids.

Keywords: Differentiation, Embryonic-tissues, Extracellular-matrix, In-vitro, Kidney organoids, Model, Neural-tube, Pluripotent stem-cells, Reconstitution, Self-organization


Blanco-Fernandez, B, Castano, O, Mateos-Timoneda, MA, Engel, E, Perez-Amodio, S, (2021). Nanotechnology Approaches in Chronic Wound Healing Advances In Wound Care 10, 234-256

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.

Keywords: chronic, diabetes, liposomes, nanofibers, nanoparticles, Chronic, Chronic wound, Diabetes, Diabetic wound, Diabetic-rats, Dressings, Drug mechanism, Extracellular-matrix, Growth-factor, Human, In-vitro, Liposome, Liposomes, Mesenchymal stem-cells, Metal nanoparticle, Nanofiber, Nanofibers, Nanofibrous scaffolds, Nanoparticles, Nanotechnology, Nonhuman, Polyester, Polymer, Polysaccharide, Priority journal, Protein, Review, Self assembled protein nanoparticle, Silk fibroin, Skin wounds, Wound healing, Wound healing promoting agent


Badiola-Mateos, M., Hervera, A., del Río, J. A., Samitier, J., (2018). Challenges and future prospects on 3D in-vitro modeling of the neuromuscular circuit Frontiers in Bioengineering and Biotechnology 6, Article 194

Movement of skeletal-muscle fibers is generated by the coordinated action of several cells taking part within the locomotion circuit (motoneurons, sensory-neurons, Schwann cells, astrocytes, microglia, and muscle-cells). Failures in any part of this circuit could impede or hinder coordinated muscle movement and cause a neuromuscular disease (NMD) or determine its severity. Studying fragments of the circuit cannot provide a comprehensive and complete view of the pathological process. We trace the historic developments of studies focused on in-vitro modeling of the spinal-locomotion circuit and how bioengineered innovative technologies show advantages for an accurate mimicking of physiological conditions of spinal-locomotion circuit. New developments on compartmentalized microfluidic culture systems (cμFCS), the use of human induced pluripotent stem cells (hiPSCs) and 3D cell-cultures are analyzed. We finally address limitations of current study models and three main challenges on neuromuscular studies: (i) mimic the whole spinal-locomotion circuit including all cell-types involved and the evaluation of independent and interdependent roles of each one; (ii) mimic the neurodegenerative response of mature neurons in-vitro as it occurs in-vivo; and (iii) develop, tune, implement, and combine cμFCS, hiPSC, and 3D-culture technologies to ultimately create patient-specific complete, translational, and reliable NMD in-vitro model. Overcoming these challenges would significantly facilitate understanding the events taking place in NMDs and accelerate the process of finding new therapies.

Keywords: 3D-culture, Compartmentalized microfluidic culture systems (cμFCS), HiPSC, In-vitro models, Neuromuscular circuit


Gustavsson, J., Ginebra, M. P., Planell, J., Engel, E., (2012). Osteoblast-like cellular response to dynamic changes in the ionic extracellular environment produced by calcium-deficient hydroxyapatite Journal of Materials Science-Materials in Medicine , 23, (10), 2509-2520

Solution-mediated reactions due to ionic substitutions are increasingly explored as a strategy to improve the biological performance of calcium phosphate-based materials. Yet, cellular response to well-defined dynamic changes of the ionic extracellular environment has so far not been carefully studied in a biomaterials context. In this work, we present kinetic data on how osteoblast-like SAOS-2 cellular activity and calcium-deficient hydroxyapatite (CDHA) influenced extracellular pH as well as extracellular concentrations of calcium and phosphate in standard in vitro conditions. Since cells were grown on membranes permeable to ions and proteins, they could share the same aqueous environment with CDHA, but still be physically separated from the material. In such culture conditions, it was observed that gradual material-induced adsorption of calcium and phosphate from the medium had only minor influence on cellular proliferation and alkaline phosphatase activity, but that competition for calcium and phosphate between cells and the biomaterial delayed and reduced significantly the cellular capacity to deposit calcium in the extracellular matrix. The presented work thus gives insights into how and to what extent solution-mediated reactions can influence cellular response, and this will be necessary to take into account when interpreting CDHA performance both in vitro and in vivo.

Keywords: Alkaline-phosphatase activity, Saos-2 cells, In-vitro, bone mineralization, Biological basis, Differentiation, Culture, Matrix, Proliferation, Topography


del Rio, Jose Antonio, Soriano, Eduardo, (2010). Regenerating cortical connections in a dish: the entorhino-hippocampal organotypic slice co-culture as tool for pharmacological screening of molecules promoting axon regeneration Nature Protocols 5, (2), 217-226

We present a method for using long-term organotypic slice co-cultures of the entorhino-hippocampal formation to analyze the axon-regenerative properties of a determined compound. The culture method is based on the membrane interphase method, which is easy to perform and is generally reproducible. The degree of axonal regeneration after treatment in lesioned cultures can be seen directly using green fluorescent protein (GFP) transgenic mice or by axon tracing and histological methods. Possible changes in cell morphology after pharmacological treatment can be determined easily by focal in vitro electroporation. The well-preserved cytoarchitectonics in the co-culture facilitate the analysis of identified cells or regenerating axons. The protocol takes up to a month.

Keywords: Cajal-retzius cells, Green-fluorescent-protein, In-vitro model, Rat hippocampus, Nervous-tissue, Brain-slices, Dentate gyrus, Gene-transfer, Cultures, Damage


Bravo, R., Arimon, M., Valle-Delgado, J. J., Garcia, R., Durany, N., Castel, S., Cruz, M., Ventura, S., Fernàndez-Busquets, X., (2008). Sulfated polysaccharides promote the assembly of amyloid beta(1-42) peptide into stable fibrils of reduced cytotoxicity Journal of Biological Chemistry , 283, (47), 32471-32483

The histopathological hallmarks of Alzheimer disease are the self-aggregation of the amyloid beta peptide (A beta) in extracellular amyloid fibrils and the formation of intraneuronal Tau filaments, but a convincing mechanism connecting both processes has yet to be provided. Here we show that the endogenous polysaccharide chondroitin sulfate B (CSB) promotes the formation of fibrillar structures of the 42-residue fragment, A beta(1-42). Atomic force microscopy visualization, thioflavin T fluorescence, CD measurements, and cell viability assays indicate that CSB-induced fibrils are highly stable entities with abundant beta-sheet structure that have little toxicity for neuroblastoma cells. We propose a wedged cylinder model for A beta(1-42) fibrils that is consistent with the majority of available data, it is an energetically favorable assembly that minimizes the exposure of hydrophobic areas, and it explains why fibrils do not grow in thickness. Fluorescence measurements of the effect of different A beta(1-42) species on Ca2+ homeostasis show that weakly structured nodular fibrils, but not CSB-induced smooth fibrils, trigger a rise in cytosolic Ca2+ that depends on the presence of both extracellular and intracellular stocks. In vitro assays indicate that such transient, local Ca2+ increases can have a direct effect in promoting the formation of Tau filaments similar to those isolated from Alzheimer disease brains.

Keywords: AFM, Alzheimers-disease, Chondroitin sulfate, Heparan-sulfate, Lipid-bilayers, Beta-peptide, In-vitro, Neurodegenerative diseases, Extracellular-matrix, Prion protein