Publications

by Keyword: Intelligent robots


By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Vouloutsi, Vasiliki, Mura, Anna, Tauber, F., Speck, T., Prescott, T. J., Verschure, P., (2020). Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020, Freiburg, Germany, July 28–30, 2020, Proceedings , Springer, Cham (Lausanne, Switzerland) 12413, 1-428

This book constitutes the proceedings of the )th International Conference on Biomimetic and Biohybrid Systems, Living Machines 2020, held in Freiburg, Germany, in July 2020. Due to COVID-19 pandemic the conference was held virtually. The 32 full and 7 short papers presented in this volume were carefully reviewed and selected from 45 submissions. They deal with research on novel life-like technologies inspired by the scientific investigation of biological systems, biomimetics, and research that seeks to interface biological and artificial systems to create biohybrid systems.

Keywords: Artificial intelligence, Soft robotics, Biomimetics, Insect navigation, Synthetic nervous system, Computer vision, Bio-inspired materials, Visual homing, Locomotion+, Image processing, Intelligent robots, Human-robot interaction, Machine learning, Snake robot, Mobile robots, Robotic systems, Drosophila, Robots, Sensors, Signal processing


Aranda, J., Vinagre, M., Marti n, E. X., Casamitjana, M., Casals, A., (2010). Friendly human-machine interaction in an adapted robotized kitchen Computers Helping People with Special Needs 12th International Conference, ICCHP 2010 (ed. Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A.), Springer (Vienna, Austria) 1, 312-319

The concept and design of a friendly human-machine interaction system for an adapted robotized kitchen is presented. The kitchen is conceived in a modular way in order to be adaptable to a great diversity in level and type of assistance needs. An interaction manager has been developed which assist the user to control the system actions dynamically according to the given orders and the present state of the environment. Real time enhanced perception of the scenario is achieved by means of a 3D computer vision system. The main goal of the present project is to provide this kitchen with the necessary intelligent behavior to be able to actuate efficiently by interpreting the users' will.

Keywords: Human computer interaction, Intelligent robots, Robot vision