Publications

by Keyword: Super-resolution


By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Tian, X., De Pace, C., Ruiz-Perez, L., Chen, B., Su, R., Zhang, M., Zhang, R., Zhang, Q., Wang, Q., Zhou, H., Wu, J., Zhang, Z., Tian, Y., Battaglia, G., (2020). A Cyclometalated iridium (III) complex as a microtubule probe for correlative super-resolution fluorescence and electron microscopy Advanced Materials 32, (39), 2003901

The visualization of microtubules by combining optical and electron microscopy techniques provides valuable information to understand correlated intracellular activities. However, the lack of appropriate probes to bridge both microscopic resolutions restricts the areas and structures that can be comprehended within such highly assembled structures. Here, a versatile cyclometalated iridium (III) complex is designed that achieves synchronous fluorescence–electron microscopy correlation. The selective insertion of the probe into a microtubule triggers remarkable fluorescence enhancement and promising electron contrast. The long-life, highly photostable probe allows live-cell super-resolution imaging of tubulin localization and motion with a resolution of ≈30 nm. Furthermore, correlative light–electron microscopy and energy-filtered transmission electron microscopy reveal the well-associated optical and electron signal at a high specificity, with an interspace of ≈41 Å of microtubule monomer in cells.

Keywords: Correlation light–electron microscopy, Microtubules, Organometallic probes, Super-resolution microscopy


Delcanale, P., Albertazzi, L., (2020). DNA-PAINT super-resolution imaging data of surface exposed active sites on particles Data in Brief 30, 105468

Surface functionalization with targeting ligands confers to nanomaterials the ability of selectively recognize a biological target. Therefore, a quantitative characterization of surface functional molecules is critical for the rational development of nanomaterials-based applications, especially in nanomedicine research. Single-molecule localization microscopy can provide visualization of surface molecules at the level of individual particles, preserving the integrity of the material and overcoming the limitations of analytical methods based on ensemble averaging. Here we provide single-molecule localization data obtained on streptavidin-coated polystyrene particles, which can be exploited as a model system for surface-functionalized materials. After loading of the active sites of streptavidin molecules with a biotin-conjugated probe, they were imaged with a DNA-PAINT imaging approach, which can provide single-molecule imaging at subdiffraction resolution and molecule counting. Both raw records and analysed data, consisting in a list of space-time single-molecule coordinates, are shared. Additionally, Matlab functions are provided that analyse the single-molecule coordinates in order to quantify features of individual particles. These data might constitute a valuable reference for applications of similar quantitative imaging methodologies to other types of functionalized nanomaterials.

Keywords: DNA-PAINT, Functional materials, Nanoparticles, Single-molecule localization microscopy, Super-resolution microscopy


Fuentes, E., Bohá, Fuentes-Caparrós, A. M., Schweins, R., Draper, E. R., Adams, D. J., Pujals, S., Albertazzi, L., (2020). PAINT-ing fluorenylmethoxycarbonyl (Fmoc)-diphenylalanine hydrogels Chemistry - A European Journal 26, (44), 9869-9873

Self-assembly of fluorenylmethoxycarbonyl-protected diphenylalanine (FmocFF) in water is widely known to produce hydrogels. Typically, confocal microscopy is used to visualize such hydrogels under wet conditions, that is, without freezing or drying. However, key aspects of hydrogels like fiber diameter, network morphology and mesh size are sub-diffraction limited features and cannot be visualized effectively using this approach. In this work, we show that it is possible to image FmocFF hydrogels by Points Accumulation for Imaging in Nanoscale Topography (PAINT) in native conditions and without direct gel labelling. We demonstrate that the fiber network can be visualized with improved resolution (≈50 nm) both in 2D and 3D. Quantitative information is extracted such as mesh size and fiber diameter. This method can complement the existing characterization tools for hydrogels and provide useful information supporting the design of new materials.

Keywords: FmocFF, Hydrogels, Mesh size, PAINT, Super-resolution


Baranov, M. V., Olea, R. A., van den Bogaart, G., (2019). Chasing uptake: Super-resolution microscopy in endocytosis and phagocytosis Trends in Cell Biology 29, (9), 727-739

Since their invention about two decades ago, super-resolution microscopes have become a method of choice in cell biology. Owing to a spatial resolution below 50 nm, smaller than the size of most organelles, and an order of magnitude better than the diffraction limit of conventional light microscopes, superresolution microscopy is a powerful technique for resolving intracellular trafficking. In this review we discuss discoveries in endocytosis and phagocytosis that have been made possible by super-resolution microscopy – from uptake at the plasma membrane, endocytic coat formation, and cytoskeletal rearrangements to endosomal maturation. The detailed visualization of the diverse molecular assemblies that mediate endocytic uptake will provide a better understanding of how cells ingest extracellular material.

Keywords: Endocytosis, Endosomes, Organelles, Super-resolution microscopy, Trafficking


Feiner-Gracia, N., Olea, R. A., Fitzner, R., El Boujnouni, N., Van Asbeck, A. H., Brock, R., Albertazzi, L., (2019). Super-resolution imaging of structure, molecular composition, and stability of single oligonucleotide polyplexes Nano Letters 19, (5), 2784-2792

The successful application of gene therapy relies on the development of safe and efficient delivery vectors. Cationic polymers such as cell-penetrating peptides (CPPs) can condense genetic material into nanoscale particles, called polyplexes, and induce cellular uptake. With respect to this point, several aspects of the nanoscale structure of polyplexes have remained elusive because of the difficulty in visualizing the molecular arrangement of the two components with nanometer resolution. This limitation has hampered the rational design of polyplexes based on direct structural information. Here, we used super-resolution imaging to study the structure and molecular composition of individual CPP-mRNA polyplexes with nanometer accuracy. We use two-color direct stochastic optical reconstruction microscopy (dSTORM) to unveil the impact of peptide stoichiometry on polyplex structure and composition and to assess their destabilization in blood serum. Our method provides information about the size and composition of individual polyplexes, allowing the study of such properties on a single polyplex basis. Furthermore, the differences in stoichiometry readily explain the differences in cellular uptake behavior. Thus, quantitative dSTORM of polyplexes is complementary to the currently used characterization techniques for understanding the determinants of polyplex activity in vitro and inside cells.

Keywords: dSTORM, Gene delivery, Polyplexes, Stability, Super-resolution microscopy


Feiner-Gracia, Natalia, Beck, Michaela, Pujals, Sílvia, Tosi, Sébastien, Mandal, Tamoghna, Buske, Christian, Linden, Mika, Albertazzi, Lorenzo, (2017). Super-resolution microscopy unveils dynamic heterogeneities in nanoparticle protein corona Small 13, (41), 1701631

The adsorption of serum proteins, leading to the formation of a biomolecular corona, is a key determinant of the biological identity of nanoparticles in vivo. Therefore, gaining knowledge on the formation, composition, and temporal evolution of the corona is of utmost importance for the development of nanoparticle-based therapies. Here, it is shown that the use of super-resolution optical microscopy enables the imaging of the protein corona on mesoporous silica nanoparticles with single protein sensitivity. Particle-by-particle quantification reveals a significant heterogeneity in protein absorption under native conditions. Moreover, the diversity of the corona evolves over time depending on the surface chemistry and degradability of the particles. This paper investigates the consequences of protein adsorption for specific cell targeting by antibody-functionalized nanoparticles providing a detailed understanding of corona-activity relations. The methodology is widely applicable to a variety of nanostructures and complements the existing ensemble approaches for protein corona study.

Keywords: Heterogeneity, Mesoporous silica nanoparticles, Protein corona, Super-resolution imaging, Targeting


Garcia-Parajo, M. F., (2012). The role of nanophotonics in regenerative medicine Nanotechnology in Regenerative Medicine - Methods and Protocols (Methods in Molecular Biology) (ed. Navarro, M., Planell, J. A.), Springer (New York, USA) 811, 267-284

Cells respond to biochemical and mechanical stimuli through a series of steps that begin at the molecular, nanometre level, and translate finally in global cell response. Defects in biochemical- and/or mechanical-sensing, transduction or cellular response are the cause of multiple diseases, including cancer and immune disorders among others. Within the booming field of regenerative medicine, there is an increasing need for developing and applying nanotechnology tools to bring understanding on the cellular machinery and molecular interactions at the nanoscale. Nanotechnology, nanophotonics and in particular, high-resolution-based fluorescence approaches are already delivering crucial information on the way that cells respond to their environment and how they organize their receptors to perform specialized functions. This chapter focuses on emerging super-resolution optical techniques, summarizing their principles, technical implementation, and reviewing some of the achievements reached so far.

Keywords: Cell membrane organization, Nanophotonics, Near-field optical microscopy, Super-resolution optical microscopy


van Zanten, T. S., Garcia-Parajo, M. F., (2012). Super-resolution near-field optical microscopy Comprehensive Biophysics (ed. Egelman, E. H.), Elsevier (Desdren, Germany) Volume 2: Biophysical Techniques for Characterization of Cells, 144-164

Near-field optical microscopy is a technique not limited by the laws of diffraction that enables simultaneous high-resolution fluorescence and topographic measurements at the nanometer scale. This chapter highlights the intrinsic advantages of near-field optics in the study of cellular structures. The first part of the chapter lays the foundations of the near-field concept and technical implementation of near-field scanning optical microscopy (NSOM), whereas the second part of the chapter focuses on applications of NSOM to the study of model membranes and cellular structures on the plasma membrane. The last part of the chapter discusses further directions of near-field optics, including optical antennas and fluorescence correlation spectroscopy approaches in the near-field regime.

Keywords: Biological membranes, Cell membrane nanoscale compartmentalization, Cellular nanodomains, Fluorescence correlation spectroscopy in reduced volumes, Immunoreceptor imaging, Lipid rafts, Near-field scanning optical microscopy, Optical nano-antennas, Shear force imaging, Single molecule detection, Super-resolution microscopy


van Zanten, T. S., Cambi, A., Garcia-Parajo, M. F., (2010). A nanometer scale optical view on the compartmentalization of cell membranes Biochimica et Biophysica Acta - Biomembranes , 1798, (4), 777-787

For many years, it was believed that the laws of diffraction set a fundamental limit to the spatial resolution of conventional light microscopy. Major developments, especially in the past few years, have demonstrated that the diffraction barrier can be overcome both in the near- and far-field regime. Together with dynamic measurements, a wealth of new information is now emerging regarding the compartmentalization of cell membranes. In this review we focus on optical methods designed to explore the nanoscale architecture of the cell membrane, with a focal point on near-field optical microscopy (NSOM) as the first developed technique to provide truly optical super-resolution beyond the diffraction limit of light. Several examples illustrate the unique capabilities offered by NSOM and highlight its usefulness on cell membrane studies, complementing the palette of biophysical techniques available nowadays.

Keywords: Membrane nanodomain, Lipid raft, Single molecule detection, Near-field scanning optical microscopy, Super-resolution optical microscopy