by Keyword: Titanium

By year:[ 2021 | 2020 | 2019 | 2018 | 2017 | 2016 | 2015 | 2014 | 2013 | 2012 | 2011 | 2010 | 2009 | 2008 | 2007 | 2006 | 2005 ]

Rodríguez-Contreras, A., Torres, D., Guillem-Marti, J., Sereno, P., Ginebra, M. P., Calero, J. A., Manero, J. M., Rupérez, E., (2020). Development of novel dual-action coatings with osteoinductive and antibacterial properties for 3D-printed titanium implants Surface and Coatings Technology 403, 126381

Gallium (Ga) has been recently proposed as a novel therapeutic agent, since it promotes bone formation and exhibits antibacterial properties. This work focuses on the optimization of a thermochemical treatment that incorporates Ga ions by the addition of the body-friendly Ga nitrate approved by the Food and Drug Administration. The objective was to simultaneously provide the inner and the outer surfaces of porous‑titanium surfaces obtained by 3D-printing with bioactivity and antibacterial properties. The apatite-forming ability of the coating, as well as the antibacterial activity and SaOS-2 cell adhesion, proliferation, differentiation and mineralization were evaluated and compared with untreated Ti surfaces. The characterization of the surfaces revealed the presence of a Ga-containing calcium titanate layer, which was non cytotoxic and in simulated body fluid produced a homogeneous apatite coating well adhered to the substrate. The formation of this apatite layer was accelerated with increasing Ga amounts present on the surface, resulting also in an increase in thickness. An initial quick release of Ga ion promoted the antibacterial effect against gram positive strains, especially for Pseudomonas aeruginosa, one of the most frequent resistant pathogens in nosocomial infections. SaOS-2 cells adhered and proliferated on the Ga-doped Ti surfaces, its presence contributed to cell differentiation and to considerably increase the mineralization levels. Thus, the developed multifunctional coatings could provide bioactivity to the porous Ti implants while protecting them from the most frequent gram-negative pathogens.

Keywords: 3D-printing, Antibacterial activity, Biomaterials, Gallium, Porous structures, Titanium implants

Vidal, E., Torres, D., Guillem-Marti, J., Scionti, G., Manero, J. M., Ginebra, M. P., Rodríguez, D., Rupérez, E., (2020). Titanium scaffolds by direct ink writing: Fabrication and functionalization to guide osteoblast behavior Metals 10, (9), 1156

Titanium (Ti) and Ti alloys have been used for decades for bone prostheses due to its mechanical reliability and good biocompatibility. However, the high stiffness of Ti implants and the lack of bioactivity are pending issues that should be improved to minimize implant failure. The stress shielding effect, a result of the stiffness mismatch between titanium and bone, can be reduced by introducing a tailored structural porosity in the implant. In this work, porous titanium structures were produced by direct ink writing (DIW), using a new Ti ink formulation containing a thermosensitive hydrogel. A thermal treatment was optimized to ensure the complete elimination of the binder before the sintering process, in order to avoid contamination of the titanium structures. The samples were sintered in argon atmosphere at 1200 °C, 1300 °C or 1400 °C, resulting in total porosities ranging between 72.3% and 77.7%. A correlation was found between the total porosity and the elastic modulus of the scaffolds. The stiffness and yield strength were similar to those of cancellous bone. The functionalization of the scaffold surface with a cell adhesion fibronectin recombinant fragment resulted in enhanced adhesion and spreading of osteoblastic-like cells, together with increased alkaline phosphatase expression and mineralization.

Keywords: Direct ink writing, Osseointegration, Recombinant protein, Thermoresponsive binder, Titanium, Titanium scaffold

Guillem-Marti, J., Gelabert, M., Heras-Parets, A., Pegueroles, M., Ginebra, M. P., Manero, J. M., (2019). RGD mutation of the heparin binding II fragment of fibronectin for guiding mesenchymal stem cell behavior on titanium surfaces ACS Applied Materials and Interfaces 11, (4), 3666-3678

Installing bioactivity on metallic biomaterials by mimicking the extracellular matrix (ECM) is crucial for stimulating specific cellular responses to ultimately promote tissue regeneration. Fibronectin is an ECM protein commonly used for biomaterial functionalization. The use of fibronectin recombinant fragments is an attractive alternate to the use of full-length fibronectin because of the relatively low cost and facility of purification. However, it is necessary to combine more than one fragment, for example, the cell attachment site and the heparin binding II (HBII), either mixed or in one molecule, to obtain complete activity. In the present study, we proposed to install adhesion capacity to the HBII fragment by an RGD gain-of-function DNA mutation, retaining its cell differentiation capacity and thereby producing a small and very active protein fragment. The novel molecule, covalently immobilized onto titanium surfaces, maintained the growth factor-binding capacity and stimulated cell spreading, osteoblastic cell differentiation, and mineralization of human mesenchymal stem cells compared to the HBII native protein. These results highlight the potential capacity of gain-of-function DNA mutations in the design of novel molecules for the improvement of osseointegration properties of metallic implant surfaces.

Keywords: Fibronectin, Growth factor, Mutation, Osseointegration, Recombinant protein, Titanium

Vidal, E., Buxadera-Palomero, J., Pierre, C., Manero, J. M., Ginebra, M. P., Cazalbou, S., Combes, C., Rupérez, E., Rodríguez, D., (2019). Single-step pulsed electrodeposition of calcium phosphate coatings on titanium for drug delivery Surface and Coatings Technology 358, 266-275

Metallic implants have some limitations related to bioactivity and bacteria colonization leading to infections. In this regard, calcium phosphate coatings can be used as carrier for drug delivery in order to improve the mentioned drawbacks. The present work proposes the introduction of an antibacterial agent in the course of a pulsed and reverse pulsed electrodeposition. Calcium phosphate coatings were prepared in 30 min using different pulse waveforms (unipolar-bipolar), current densities (2–5 mA/cm2) and temperatures (40–60 °C). Mechanical stability of the as-coated surfaces was studied in order to select the optimal electrodeposition conditions. Subsequently, selected coatings were loaded with an antiseptic agent, chlorhexidine digluconate (CHX), via a single-step co-deposition procedure. CHX concentration added to the electrolyte was adjusted to 3 mM based on the antibacterial efficacy of the loaded coatings evaluated in vitro with Staphylococcus aureus and Escherichia coli bacteria strains. Whereas the same chlorhexidine concentration was added to the electrolyte, results showed that the amount of CHX loaded was different for each condition while release kinetics was maintained. The results of this work demonstrate that a pulsed co-deposition strategy has great potential to modulate local delivery of antibacterial agents such as chlorhexidine digluconate, which may prevent early phase infections of metallic implants after insertion.

Keywords: Antibacterial agent, Calcium phosphate, Characterization, Coating, Pulse electrodeposition, Titanium

Hoyos-Nogués, Mireia, Buxadera-Palomero, Judit, Ginebra, Maria-Pau, Manero, José María, Gil, F. J., Mas-Moruno, Carlos, (2018). All-in-one trifunctional strategy: A cell adhesive, bacteriostatic and bactericidal coating for titanium implants Colloids and Surfaces B: Biointerfaces 169, 30-40

Strategies to inhibit initial bacterial adhesion are extremely important to prevent infection on biomaterial surfaces. However, the simultaneous attraction of desired eukaryotic cells remains a challenge for successful biomaterial-host tissue integration. Here we describe a method for the development of a trifunctional coating that repels contaminating bacteria, kills those that adhere, and promotes osteoblast adhesion. To this end, titanium surfaces were functionalized by electrodeposition of an antifouling polyethylene glycol (PEG) layer and subsequent binding of a peptidic platform with cell-adhesive and bactericidal properties. The physicochemical characterization of the samples via SEM, contact angle, FTIR and XPS analysis verified the successful binding of the PEG layer and the biomolecules, without altering the morphology and topography of the samples. PEG coatings inhibited protein adsorption and osteoblast-like (SaOS-2) attachment; however, the presence of cell adhesive domains rescued osteoblast adhesion, yielding higher values of cell attachment and spreading compared to controls (p < 0.05). Finally, the antibacterial potential of the coating was measured by live/dead assays and SEM using S. sanguinis as a model of early colonizer in oral biofilms. The presence of PEG layers significantly reduced bacterial attachment on the surfaces (p < 0.05). This antibacterial potential was further increased by the bactericidal peptide, yielding values of bacterial adhesion below 0.2% (p < 0.05). The balance between the risk of infection and the optimal osteointegration of a biomaterial is often described as “the race for the surface”, in which contaminating bacteria and host tissue cells compete to colonize the implant. In the present work, we have developed a multifunctional coating for a titanium surface that promotes the attachment and spreading of osteoblasts, while very efficiently inhibits bacterial colonization, thus holding promise for application in bone replacing applications.

Keywords: Polyethylene glycol, Antibacterial, Osteointegration, Multifunctionality, Peptides, Titanium

Fraioli, R., Dashnyam, K., Kim, J. H., Perez, R. A., Kim, H. W., Gil, J., Ginebra, M. P., Manero, J. M., Mas-Moruno, C., (2016). Surface guidance of stem cell behavior: Chemically tailored co-presentation of integrin-binding peptides stimulates osteogenic differentiation in vitro and bone formation in vivo Acta Biomaterialia 43, 269-281

Surface modification stands out as a versatile technique to create instructive biomaterials that are able to actively direct stem cell fate. Chemical functionalization of titanium has been used in this work to stimulate the differentiation of human mesenchymal stem cells (hMSCs) into the osteoblastic lineage, by covalently anchoring a synthetic double-branched molecule (PTF) to the metal that allows a finely controlled presentation of peptidic motifs. In detail, the effect of the RGD adhesive peptide and its synergy motif PHSRN is studied, comparing a random distribution of the two peptides with the chemically-tailored disposition within the custom made synthetic platform, which mimics the interspacing between the motifs observed in fibronectin. Contact angle measurement and XPS analysis are used to prove the efficiency of functionalization. We demonstrate that, by rationally designing ligands, stem cell response can be efficiently guided towards the osteogenic phenotype: In vitro, PTF-functionalized surfaces support hMSCs adhesion, with higher cell area and formation of focal contacts, expression of the integrin receptor α5β1 and the osteogenic marker Runx2, and deposition a highly mineralized matrix, reaching values of mineralization comparable to fibronectin. Our strategy is also demonstrated to be efficient in promoting new bone growth in vivo in a rat calvarial defect. These results highlight the efficacy of chemical control over the presentation of bioactive peptides; such systems may be used to engineer bioactive surfaces with improved osseointegrative properties, or can be easily tuned to generate multi-functional coatings requiring a tailored disposition of the peptidic motifs. Statement of significance Organic coatings have been proposed as a solution to foster osseointegration of orthopedic implants. Among them, extracellular matrix-derived peptide motifs are an interesting biomimetic strategy to harness cell-surface interactions. Nonetheless, the combination of multiple peptide motifs in a controlled manner is essential to achieve receptor specificity and fully exploit the potentiality of synthetic peptides. Herein, we covalently graft to titanium a double branched molecule to guide stem cell fate in vitro and generate an osseoinductive titanium surface in vivo. Such synthetic ligand allows for the simultaneous presentation of two bioactive motifs, thus is ideal to test the effect of synergic sequences, such as RGD and PHSRN, and is a clear example of the versatility and feasibility of rationally designed biomolecules.

Keywords: hMSCs, Integrin-binding peptides, Osseointegration, RGD-PHSRN, Titanium

Rodríguez-Hernández, Ana G., Muñoz-Tabares, José, Godoy-Gallardo, Maria, Juárez, Antonio, Gil, Francisco-Javier, (2013). S. sanguinis adhesion on rough titanium surfaces: Effect of culture media Materials Science and Engineering: C 33, (2), 714-720

Bacterial colonization plays a key role in dental implant failure, because they attach directly on implant surface upon implantation. Between different types of bacteria associated with the oral environment, Streptococcus sanguinis is essential in this process since it is an early colonizer. In this work the relationship between titanium surfaces modified by shot blasting treatment and S. sanguinis adhesion; have been studied in approached human mouth environment. Bacteria pre-inoculated with routinary solution were put in contact with titanium samples, shot-blasted with alumina and silicon carbide, and adhesion results were compared with those obtained when bacteria were pre-inoculated with modified artificial saliva medium and on saliva pre-coated titanium samples. Our results showed that bacterial adhesion on titanium samples was influenced by culture conditions. When S. sanguinis was inoculated in routinary culture media, colonies forming unities per square millimeter presented an increment correlated with roughness and surface energy, but separated by the type of particle used during shot-blasting treatment; whereas in modified artificial saliva only a relationship between bacteria adhered and the increment in both roughness and surface energy were observed, regardless of the particle type. Finally, on human saliva pre-coated samples no significant differences were observed among roughness, surface energy or particle.

Keywords: S. sanguinis, Bacterial adhesion, Titanium, Artificial saliva, Surface energy, Roughness

Hristova, K., Pecheva, E., Pramatarova, L., Altankov, G., (2011). Improved interaction of osteoblast-like cells with apatite-nanodiamond coatings depends on fibronectin Journal of Materials Science: Materials in Medicine , 22, (8), 1891-1900

New apatite (AP)/nanodiamond (ND) coating has been developed to improve physical and biological properties of stainless steel (SS) versus single AP coating. Homogeneously electrodeposited AP-ND layer demonstrates increased mechanical strength, interlayer cohesion and ductility. In the absence of serum, osteoblast-like MG63 cells attach well but poorly spread on both AP and AP-ND substrata. Pre-adsorption with serum or fibronectin (FN) improves the cellular interaction-an effect that is better pronounced on the AP-ND coating. In single protein adsorption study fluorescein isothiocyanate-labeled FN (FITC-FN) shows enhanced deposition on the AP-ND layer consistent with the significantly improved cell adhesion, spreading and focal adhesions formation (in comparison to SS and AP), particularly at low FN adsorption concentrations (1 mu g/ml). Higher FN concentrations (20 mu g/ml) abolish this difference suggesting that the promoted cellular interaction of serum (where FN is low) is caused by the greater affinity for FN. Moreover, it is found that MG63 cells tend to rearrange both adsorbed and secreted FN on the AP-ND layer suggesting facilitated FN matrix formation.

Keywords: Extracellular-matrix, Protein adsorption, Integrins, Adhesion, Biomaterials, Surfaces, Polymerization, Composite, Implants, Titanium

Michiardi, A., Helary, G., Nguyen, P. C. T., Gamble, L. J., Anagnostou, F., Castner, D. G., Migonney, V., (2010). Bioactive polymer grafting onto titanium alloy surfaces Acta Biomaterialia 6, (2), 667-675

Bioactive polymers bearing sulfonate (styrene sodium sulfonate, NaSS) and carboxylate (methylacrylic acid, MA) groups were grafted onto Ti6Al4V alloy surfaces by a two-step procedure. The Ti alloy surfaces were first chemically oxidized in a piranha solution and then directly subjected to radical polymerization at 70 °C in the absence of oxygen. The grafted surfaces were characterized by X-ray photoelectron spectroscopy (XPS), time-of-flight secondary ion mass spectrometry (ToF-SIMS) and the toluidine blue colorimetric method. Toluidine blue results showed 1-5 μg cm-2 of polymer was grafted onto the oxidized Ti surfaces. Grafting resulted in a decrease in the XPS Ti and O signals from the underlying Ti substrate and a corresponding increase in the XPS C and S signals from the polymer layer. The ToF-SIMS intensities of the S- and SO- ions correlated linearly with the XPS atomic percent S concentrations and the ToF-SIMS intensity of the TiO3H2- ion correlated linearly with the XPS atomic per cent Ti concentration. Thus, the ToF-SIMS S-, SO- and TiO3H2- intensities can be used to quantify the composition and amount of grafted polymer. ToF-SIMS also detected ions that were more characteristic of the polymer molecular structure (C6H4SO3- and C8H7SO3- from NaSS, C4H5O2- from MA), but the intensity of these peaks depended on the polymer thickness and composition. An in vitro cell culture test was carried out with human osteoblast-like cells to assess the influence of the grafted polymers on cell response. Cell adhesion after 30 min of incubation showed significant differences between the grafted and ungrafted surfaces. The NaSS grafted surfaces showed the highest degree of cell adhesion while the MA-NaSS grafted surfaces showed the lowest degree of cell adhesion. After 4 weeks in vivo in rabbit femoral bones, bone was observed to be in direct contact with all implants. The percentage of mineralized tissue around the implants was similar for NaSS grafted and non-grafted implants (59% and 57%). The MA-NaSS grafted implant exhibited a lower amount of mineralized tissue (47%).

Keywords: Bioactive polymers, Osteointegration, Titanium alloy, ToF-SIMS, XPS

Pegueroles, M., Aparicio, C., Bosio, M., Engel, E., Gil, F. J., Planell, J. A., Altankov, G., (2010). Spatial organization of osteoblast fibronectin matrix on titanium surfaces: Effects of roughness, chemical heterogeneity and surface energy Acta Biomaterialia 6, (1), 291-301

We investigated the early events of bone matrix formation, and specifically the role of fibronectin (FN) in the initial osteoblast interaction and the subsequent organization of a provisional FN matrix on different rough titanium (Ti) surfaces. Fluorescein isothiocyanate-label led FN was preadsorbed on these surfaces and studied for its three-dimensional (3-D) organization by confocal microscopy, while its amount was quantified after NaOH extraction. An irregular pattern of adsorption with a higher amount of protein on topographic peaks than on valleys was observed and attributed to the physicochemical heterogeneity of the rough Ti surfaces. MG63 osteoblast-like cells were further cultured on FN-preadsorbed Ti surfaces and an improved initial cellular interaction was observed with increasing roughness. 3-D reconstruction of the immunofluorescence images after 4 days of incubation revealed that osteoblasts deposit FN fibrils in a specific facet-like pattern that is organized within the secreted total matrix overlying the top of the samples. The thickness of this FN layer increased when the roughness of the underlying topography was increased, but not by more than half of the total maximum peak-to-valley distance, as demonstrated with images showing simultaneous reconstruction of fluorescence and topography after 7 days of cell culture.

Keywords: Fibronectin, Extracellular matrix organization, Titanium, Surface topography, Surface energy

Aparicio, C., Salvagni, E., Werner, M., Engel, E., Pegueroles, M., Rodriguez-Cabello, C., Munoz, F., Planell, J. A., Gil, J., (2009). Biomimetic treatments on dental implants for immediate loading applications Journal of Medical Devices , 3, (2), 027555

Summary form only given. Commercially pure titanium (cp Ti) dental implants have been widely and successfully used with high rates of clinical success in normal situations. However, there is still a lack of reliable synthetic materials to be used either a) when immediate loading of the implant is desired or b) when bone presents compromised conditions due to trauma, infection, systemic disease and/or lack of significant bone volume. Our group has aimed the development of biomimetic strategies of surface modification to obtain metallic implants with osteostimulative capabilities. These surface modifications will provide implants with a rapid rate of newly-formed bone growth and with ossecoalescence, i.e., direct chemical contact with the surrounding tissues. Consequently, the biomimetically-modified implants will be reliably used on those more demanding clinical situations, cp Ti surfaces treated to obtain a combination of an optimal random surface topography (in the micro and nanolevels) with a chemical modification of the naturally-formed titania layer have been proved bioactive. These rough and bioactive surfaces nucleate and grow a homogeneous hydroxyapatite layer both in vitro and in vivo. They stimulate the osteoblasts differentiation and trigger a rapid bone formation that mechanically fixes implants under immediate-loading conditions. A simple process using silane chemistry has been proved specific, rapid, and reliable to covalently immobilize biomolecules on cp Ti surfaces. This methodology can be used to develop biofunc- tionalized implant surfaces with different or combined bioactivities. The biofunctional molecules can be biopolymers, proteins, growth factors, and synthetic peptides specifically designed to be attached to the surface. The bioactive properties of the molecules designed and used can be mineral growing and nucleation, osteoblast differentiation (bone regeneration), fibroblasts differentiation (biological sealing), antibiotic,... Specifically, we have obtained mechanically and thermochemically stable coatings made of recombinant elastin-like biopolymers. The biopolymers bear either a) the RODS peptide, which is a highly-specific cell-adhesion motif present in proteins of the extracellular matrix for different tissues including bone, or b) an acidic peptide sequence derived from statherin, a protein present in saliva with high affinity for calcium-phosphates and with a leading role in the remineralization processes of the hard tissues forming our teeth. Two different biomimetic strategies have been successfully developed combining topographical modification, inorganic treatments and/or biofunctionalization for improving bioactive integrative properties of cp Ti implants.

Keywords: Biomedical materials, Bone, Cellular biophysics, Dentistry, Molecular biophysics, Prosthetics, Proteins, Surface treatment, Titanium