Staff member


Oscar Guerrero Rosado

PhD Student
Synthetic, Perceptive, Emotive and Cognitive Systems (SPECS)
oguerreros@ibecbarcelona.eu

Staff member publications

Guerrero, O., Verschure, P., (2020). Distributed adaptive control: An ideal cognitive architecture candidate for managing a robotic recycling plant Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020 (Lecture Notes in Computer Science) , Springer International Publishing (Freiburg, Germany) 12413, 153-164

In the past decade, society has experienced notable growth in a variety of technological areas. However, the Fourth Industrial Revolution has not been embraced yet. Industry 4.0 imposes several challenges which include the necessity of new architectural models to tackle the uncertainty that open environments represent to cyber-physical systems (CPS). Waste Electrical and Electronic Equipment (WEEE) recycling plants stand for one of such open environments. Here, CPSs must work harmoniously in a changing environment, interacting with similar and not so similar CPSs, and adaptively collaborating with human workers. In this paper, we support the Distributed Adaptive Control (DAC) theory as a suitable Cognitive Architecture for managing a recycling plant. Specifically, a recursive implementation of DAC (between both single-agent and large-scale levels) is proposed to meet the expected demands of the European Project HR-Recycler. Additionally, with the aim of having a realistic benchmark for future implementations of the recursive DAC, a micro-recycling plant prototype is presented.

Keywords: Cognitive architecture, Distributed Adaptive Control, Recycling plant, Navigation, Motor control, Human-Robot Interaction


Vouloutsi, V., Chesson, A., Blancas, M., Guerrero, O., Verschure, P., (2020). The use of social sensorimotor contingencies in humanoid robots Biomimetic and Biohybrid Systems 9th International Conference, Living Machines 2020 (Lecture Notes in Computer Science) , Springer International Publishing (Freiburg, Germany) 12413, 378-389

This pilot study investigates the role of social sensorimotor contingencies as exhibited from a humanoid robot to allow mutual understanding and social entrainment in a group social activity. The goal is to evaluate whether sensorimotor contingencies can lead to transparent and understandable interactions while we explore the dimension of personality. We propose the task of taking a selfie with a robot and a group of humans as the benchmark to evaluate the social sensorimotor contingencies displayed. We have constructed two models of interaction with an introverted and extroverted robot. We also seek to address the gap in research in context and personality of social sensorimotor contingencies in HRI and contribute to the field of personality in social robotics by determining what type of behaviour of the robot attracts certain personalities in humans in group settings. Although the sample size was small, and there were no significant differences between conditions, results suggest that the expression of sensorimotor contingencies can lead to successful coupling and interactions.

Keywords: Human-robot interaction, Personality, Social robots, Social sensorimotor contingencies