Staff member

José María Muñoz López

PhD Student
Molecular Bionics

Staff member publications

Nowadays, the main limitation for clinical application of scaffolds is considered to be an insufficient vascularization of the implanted platforms and healing tissues. In our studies, we proposed a novel PLA-based hybrid platform with aligned and random fibrous internal structure and incorporated calcium phosphate (CaP) ormoglass nanoparticles (0, 10, 20 and 30 wt%) as an off-the-shelf method for obtaining scaffolds with pro-angiogenic properties. Complex morphological and physicochemical evaluation of PLA–CaP ormoglass composites was performed before and after in vitro degradation test in SBF solution to assess their biological potential. The degradation process of PLA–CaP ormoglass composites was accompanied by numerous CaP-based precipitations with extended topography and cauliflower-like shape which may enhance bonding of the material with the bone tissue and accelerate the regenerative process. Random fiber orientation was preferable for CaP compounds deposition upon in vitro degradation. CaP compounds precipitated firstly for randomly oriented composite nonwovens with 20 and 30 wt% addition of ormoglass. Moreover, the preliminary bioactivity test has shown that BSA adsorbed to PLA–CaP ormoglass composites (both aligned and randomly oriented) with 20 and 30 wt% of ormoglass nanoparticles which was not observed for pure PLA scaffolds.

Keywords: Calcium phosphate ormoglass, Composites, Degradation, Electrospinning, PLA

Sunyer, R., Conte, V., Escribano, J., Elosegui-Artola, A., Labernadie, A., Valon, L., Navajas, D., García-Aznar, J. M., Muñoz, J. J., Roca-Cusachs, P., Trepat, X., (2016). Collective cell durotaxis emerges from long-range intercellular force transmission Science 353, (6304), 1157-1161

The ability of cells to follow gradients of extracellular matrix stiffness-durotaxis-has been implicated in development, fibrosis, and cancer. Here, we found multicellular clusters that exhibited durotaxis even if isolated constituent cells did not. This emergent mode of directed collective cell migration applied to a variety of epithelial cell types, required the action of myosin motors, and originated from supracellular transmission of contractile physical forces. To explain the observed phenomenology, we developed a generalized clutch model in which local stick-slip dynamics of cell-matrix adhesions was integrated to the tissue level through cell-cell junctions. Collective durotaxis is far more efficient than single-cell durotaxis; it thus emerges as a robust mechanism to direct cell migration during development, wound healing, and collective cancer cell invasion.

Although the impact of composites based on Ti-doped calcium phosphate glasses is low compared with that of bioglass, they have been already shown to possess great potential for bone tissue engineering. Composites made of polylactic acid (PLA) and a microparticle glass of 5TiO2-44.5CaO-44.5P2O5-6Na2O (G5) molar ratio have already demonstrated in situ osteo- and angiogenesis-triggering abilities. As many of the hybrid materials currently developed usually promote osteogenesis but still lack the ability to induce vascularization, a G5/PLA combination is a cost-effective option for obtaining new instructive scaffolds. In this study, nanostructured PLA-ORMOGLASS (organically modified glass) fibers were produced by electrospinning, in order to fabricate extra-cellular matrix (ECM)-like substrates that simultaneously promote bone formation and vascularization. Physical-chemical and surface characterization and tensile tests demonstrated that the obtained scaffolds exhibited homogeneous morphology, higher hydrophilicity and enhanced mechanical properties than pure PLA. In vitro assays with rat mesenchymal stem cells (rMSCs) and rat endothelial progenitor cells (rEPCs) also showed that rMSCs attached and proliferated on the materials influenced by the calcium content in the environment. In vivo assays showed that hybrid composite PLA-ORMOGLASS fibers were able to promote the formation of blood vessels. Thus, these novel fibers are a valid option for the design of functional materials for tissue engineering applications.

Asadipour, N., Trepat, X., Muñoz, J. J., (2016). Porous-based rheological model for tissue fluidisation Journal of the Mechanics and Physics of Solids 96, 535-549

It has been experimentally observed that cells exhibit a fluidisation process when subjected to a transient stretch, with an eventual recovery of the mechanical properties upon removal of the applied deformation. This fluidisation process is characterised by a decrease of the storage modulus and an increase of the phase angle. We propose a rheological model which is able to reproduce this combined mechanical response. The model is described in the context of continua and adapted to a cell-centred particle system that simulates cell–cell interactions. Mechanical equilibrium is coupled with two evolution laws: (i) one for the reference configuration, and (ii) another for the porosity or polymer density. The first law depends on the actual strain of the tissue, while the second assumes different remodelling rates during porosity increase and decrease. The theory is implemented on a particle based model and tested on a stretching experiment. The numerical results agree with the experimental measurements for different stretching magnitudes.

Keywords: Cell remodelling, Cell rheology, Fluidisation, Softening, Viscoelasticity

CuInSe2 films were prepared onto Cu-cladded substrates by ultrasonic-assisted electrodeposition using different bath compositions and a fixed deposition potential of E=-1500 mV vs Ag/AgCl. In situ electrochemical treatments named selenization and electrocrystallization, in a Se4+ electrolyte were applied to modify the morphology, film structure and the phase composition. Films were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy and photocurrent response. A Cu2-xSe layer develops as the electrode is introduced into the electrolyte. The presence of Cu-In, In-Se, Cu-Se, cubic, hexagonal and tetragonal CuInSe2 phases as well as elemental In and Se was observed. After selenization, partial phase dissolution and Se deposition is observed and after the electrocrystallization treatment the secondary phases such as Cu-Se, Cu-In, In and Se reduce substantially and the grain sizes increase, as well as the photocurrent response. Phase diagrams are constructed for each set of films and reaction mechanisms are proposed to explain the phase evolution.

Keywords: CuInSe2, Electrodeposition, In situ electrochemical treatments, Phase composition, Surface modification

Brugués, A., Anon, E., Conte, V., Veldhuis, J. H., Gupta, M., Colombelli, J., Muñoz, J. J., Brodland, G. W., Ladoux, B., Trepat, X., (2014). Forces driving epithelial wound healing Nature Physics 10, (9), 683–690

A fundamental feature of multicellular organisms is their ability to self-repair wounds through the movement of epithelial cells into the damaged area. This collective cellular movement is commonly attributed to a combination of cell crawling and 'purse-string' contraction of a supracellular actomyosin ring. Here we show by direct experimental measurement that these two mechanisms are insufficient to explain force patterns observed during wound closure. At early stages of the process, leading actin protrusions generate traction forces that point away from the wound, showing that wound closure is initially driven by cell crawling. At later stages, we observed unanticipated patterns of traction forces pointing towards the wound. Such patterns have strong force components that are both radial and tangential to the wound. We show that these force components arise from tensions transmitted by a heterogeneous actomyosin ring to the underlying substrate through focal adhesions. The structural and mechanical organization reported here provides cells with a mechanism to close the wound by cooperatively compressing the underlying substrate.

Muñoz, J. J., Conte, V., Asadipour, N., Miodownik, M., (2013). A truss element for modelling reversible softening in living tissues Mechanics Research Communications , 49, 44-49

We resort to non-linear viscoelasticity to develop a truss element able to model reversible softening in lung epithelial tissues undergoing transient stretch. Such a Maxwell truss element is built by resorting to a three-noded element whose mid-node is kinematically constrained to remain on the line connecting the end-nodes. The whole mechanical system undergoes an additive decomposition of the strains along the truss direction where the total contribution of the mid-node is accounted for by using a null-space projection and static condensation techniques. Assembling of such line-elements in 3D networks allows us to model extended regions of living tissues as well as their anisotropies.

Keywords: Maxwell, Null-space, Reversible softening, Truss, Viscoelasticity

We present a study of the family Y(Ba1-xSrx)Co 2O5.5 (x = 0, 1/8, 1/4, 1/3, 3/8, 1/2). The complex magnetic behavior characterizing the parent (x = 0) compound and other RBaCo2O5.5 compounds can still be guessed in M(T) curves of x = 1/8 compound, but it disappears under substitution of Ba by Sr for all the studies cases (x ≥ 1/8). This is linked to the fact that the order of oxygen vacancies is lost, as found by neutron and synchrotron X-ray powder diffraction.