DONATE

Positive review for MySpine

The IBEC-coordinated European project MySpine, which reached its midpoint at the end of August, received a positive appraisal at its first Annual Review in Brussels in June.

Imaging the electrocatalytic activity of single nanoparticles

An IBEC researcher has collaborated on a paper published in Nature Nanotechnology that outlines an effective new way to characterize and improve nanoparticle catalysts, which play essential roles in biomedicine, industry and everyday life by affecting the rate at which chemical reactions take place.

Nanoparticle catalysts are used in making polymers and biofuels, synthesising new drugs, pollution control devices and fuel cell technology, and both characterising them and finding more effective ones is vital.

Smart biomaterial promotes angiogenesis

IBEC researchers have stuck tissue engineering gold with the creation of a new ‘smart’ biomaterial that triggers angiogenesis by providing the biochemical and mechanical cues needed for the process to begin.

Researchers in Josep Planell’s Biomaterials for Regenerative Therapies group, in a paper led by Elisabeth Engel, reveal their calcium phosphate glass/PLA composite that itself promotes the mobilization and differentiation of endothelial progenitor cells – those that become the cells making up the lining of blood vessels.

“In regenerative medicine, successful tissue repair hinges on being able to recreate the right environment, so that the biomaterial not only acts as a scaffold for the new tissue but also contributes to the activation of the regeneration process,” explains Elizabeth.

“Coneixement que dilueix les fronteres” (Eng)

Senior research associate Jérôme Noailly of the Biomechanics and Mechanobiology group features in an article about mobility and the opportunities offered to international researchers in the latest edition of Informacions, a monthly magazine on research, teaching and institutional activities at the UPC.

Scientists discover a new type of wave in living tissues

The Integrative Cell and Tissue Dynamics group published their latest results in the quest to understand how the cells in our bodies collectively migrate in Nature Physics this week.

In studying the motion of cell clusters, the researchers detected evidence of wave-like crests of deformation launched at the edges of the clusters and propagating from cell to cell at roughly twice the speed at which cells were moving.