DONATE

Publications

by Keyword: Alcohol

Colombi, Samuele, Saez, Isabel, Borras, Nuria, Estrany, Francesc, Perez-Madrigal, Maria M, Garcia-Torres, Jose, Morgado, Jorge, Aleman, Carlos, (2024). Glyoxal crosslinking of electro-responsive alginate-based hydrogels: Effects on the properties Carbohydrate Polymers 337, 122170

To improve the features of alginate-based hydrogels in physiological conditions, Ca2+-crosslinked 2 +-crosslinked semi interpenetrated hydrogels formed by poly(3,4-ethylenedioxythiophene):polystyrene sulfonic acid and alginate (PEDOT/Alg) were subjected to a treatment with glyoxal to form a dual ionic/covalent network. The covalent network density was systematically varied by considering different glyoxalization times (tG). t G ). The content of Ca2+ was significantly higher for the untreated hydrogel than for the glyoxalized ones, while the properties of the hydrogels were found to largely depend on t G . The porosity and swelling capacity decreased with increasing while the stiffness and electrical conductance retention capacity increased with t G . The potentiodynamic response of the hydrogels notably depended on the amount of conformational restraints introduced by the glyoxal, which is a very short crosslinker. Thus, the re-accommodation of the polymer chains during the cyclic potential scans became more difficult with increasing number of covalent crosslinks. This information was used to improve the performance of untreated PEDOT/Alg as electrochemical sensor of hydrogen peroxide by simply applying a tG G of 5 min. Overall, the control of the properties of glyoxalized hydrogels through tG G is very advantageous and can be used as an on-demand strategy to improve the performance of such materials depending on the application.

JTD Keywords: 4-ethylenedioxythiophene), Acid, Behavior, Cell, Conducting hydrogels, Dual networ, Electrochemical biosensor, Fabrication, Gel, Linke, Microspheres, Peroxidase, Poly(3, Polyvinyl-alcohol, Semi-interpenetrated hydrogel


Amil, AF, Ballester, BR, Maier, M, Verschure, PFMJ, (2022). Chronic use of cannabis might impair sensory error processing in the cerebellum through endocannabinoid dysregulation Addictive Behaviors 131, 107297

Chronic use of cannabis leads to both motor deficits and the downregulation of CB1 receptors (CB1R) in the cerebellum. In turn, cerebellar damage is often related to impairments in motor learning and control. Further, a recent motor learning task that measures cerebellar-dependent adaptation has been shown to distinguish well between healthy subjects and chronic cannabis users. Thus, the deteriorating effects of chronic cannabis use in motor performance point to cerebellar adaptation as a key process to explain such deficits. We review the literature relating chronic cannabis use, the endocannabinoid system in the cerebellum, and different forms of cerebellar-dependent motor learning, to suggest that CB1R downregulation leads to a generalized underestimation and misprocessing of the sensory errors driving synaptic updates in the cerebellar cortex. Further, we test our hypothesis with a computational model performing a motor adaptation task and reproduce the behavioral effect of decreased implicit adaptation that appears to be a sign of chronic cannabis use. Finally, we discuss the potential of our hypothesis to explain similar phenomena related to motor impairments following chronic alcohol dependency. © 2022

JTD Keywords: adaptation, addiction, alcohol-abuse, cerebellum, chronic cannabis use, cognition, deficits, endocannabinoid system, error processing, explicit, modulation, motor learning, release, synaptic plasticity, Adaptation, Adaptation, physiological, Alcoholism, Article, Behavioral science, Cannabinoid 1 receptor, Cannabis, Cannabis addiction, Cerebellum, Cerebellum cortex, Cerebellum disease, Chronic cannabis use, Computer model, Down regulation, Endocannabinoid, Endocannabinoid system, Endocannabinoids, Error processing, Hallucinogens, Human, Humans, Motor dysfunction, Motor learning, Nerve cell plasticity, Nonhuman, Physiology, Psychedelic agent, Purkinje-cells, Regulatory mechanism, Sensation, Sensory dysfunction, Sensory error processing impairment, Synaptic transmission, Task performance


Bonilla-Pons, SA, Nakagawa, S, Bahima, EG, Fernández-Blanco, A, Pesaresi, M, D'Antin, JC, Sebastian-Perez, R, Greco, D, Domínguez-Sala, E, Gómez-Riera, R, Compte, RIB, Dierssen, M, Pulido, NM, Cosma, MP, (2022). Müller glia fused with adult stem cells undergo neural differentiation in human retinal models Ebiomedicine 77, 103914

Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons.We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation.We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids.We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies.This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).Published by Elsevier B.V.

JTD Keywords: cell fusion, expression, fusion, ganglion-cells, in-vitro, mouse, müller glia, neural differentiation, organoids, regeneration, retina regeneration, stem cells, stromal cells, transplantation, 4',6 diamidino 2 phenylindole, 5' nucleotidase, Agarose, Alcohol, Arpe-19 cell line, Article, Beta catenin, Beta tubulin, Bone-marrow-cells, Bromophenol blue, Buffer, Calcium cell level, Calcium phosphate, Calretinin, Canonical wnt signaling, Cd34 antigen, Cell culture, Cell fusion, Cell viability, Coculture, Complementary dna, Confocal microscopy, Cornea transplantation, Cryopreservation, Cryoprotection, Crystal structure, Current clamp technique, Dimethyl sulfoxide, Dodecyl sulfate sodium, Edetic acid, Electrophysiology, Endoglin, Fetal bovine serum, Fibroblast growth factor 2, Flow cytometry, Fluorescence activated cell sorting, Fluorescence intensity, Glyceraldehyde 3 phosphate dehydrogenase, Glycerol, Glycine, Hoe 33342, Immunofluorescence, Immunohistochemistry, Incubation time, Interleukin 1beta, Lentivirus vector, Matrigel, Mercaptoethanol, Microinjection, Mueller cell, Müller glia, N methyl dextro aspartic acid, Nerve cell differentiation, Neural differentiation, Nitrogen, Nonhuman, Organoids, Paraffin, Paraffin embedding, Paraformaldehyde, Patch clamp technique, Penicillin derivative, Phenolsulfonphthalein, Phenotype, Phosphate buffered saline, Phosphoprotein phosphatase inhibitor, Polyacrylamide gel electrophoresis, Potassium chloride, Povidone iodine, Promoter region, Proteinase inhibitor, Real time polymerase chain reaction, Receptor type tyrosine protein phosphatase c, Restriction endonuclease, Retina, Retina dystrophy, Retina regeneration, Retinol, Rhodopsin, Rna extraction, Stem cell, Stem cells, Subcutaneous fat, Tunel assay, Visual impairment, Western blotting


Tantai, X, Liu, Y, Yeo, YH, Praktiknjo, M, Mauro, E, Hamaguchi, Y, Engelmann, C, Zhang, P, Jeong, JY, van Vugt, JLA, Xiao, HJ, Deng, H, Gao, X, Ye, Q, Zhang, JY, Yang, LB, Cai, YQ, Liu, YX, Liu, N, Li, ZF, Han, T, Kaido, T, Sohn, JH, Strassburg, C, Berg, T, Trebicka, J, Hsu, YC, Ijzermans, JNM, Wang, JH, Su, GL, Ji, FP, Nguyen, MH, (2022). Effect of sarcopenia on survival of patients with cirrhosis: A meta-analysis Journal Of Hepatology 76, 588-599

The association between sarcopenia and prognosis in patients with cirrhosis remains to be determined. In this study, we aimed to quantify the association between sarcopenia and the risk of mortality in patients with cirrhosis, by sex, underlying liver disease etiology, and severity of hepatic dysfunction.PubMed, Web of Science, EMBASE, and major scientific conference sessions were searched without language restriction through 13 January 2021 with additional manual search of bibliographies of relevant articles. Cohort studies of ?100 patients with cirrhosis and ?12 months of follow-up that evaluated the association between sarcopenia, muscle mass and the risk of mortality were included.22 studies with 6965 patients with cirrhosis were included. The pooled prevalence of sarcopenia in patients with cirrhosis was 37.5% overall (95% CI 32.4%-42.8%), higher in male patients, patients with alcohol associated liver disease (ALD), patients with CTP grade C, and when sarcopenia was defined in patients by lumbar 3- skeletal muscle index (L3-SMI). Sarcopenia was associated with the increased risk of mortality in patients with cirrhosis (adjusted-hazard ratio [aHR] 2.30, 95% CI 2.01-2.63), with similar findings in sensitivity analysis of cirrhosis patients without HCC (aHR 2.35, 95% CI 1.95-2.83) and in subgroup analysis by sex, liver disease etiology, and severity of hepatic dysfunction. The association between quantitative muscle mass index and mortality further supports the poor prognosis for patients with sarcopenia (aHR 0.95, 95% CI 0.93-0.98). There was no significant heterogeneity in all analyses.Sarcopenia was highly and independently associated with higher risk of mortality in patients with cirrhosis.The prevalence of sarcopenia and its association with death in patients with cirrhosis remain unclear. This meta-analysis indicated that sarcopenia affected about one-third of patients with cirrhosis and up to 50% in patients with ALD or Child's class C cirrhosis. Sarcopenia was independently associated with about 2-fold higher risk of mortality in patients with cirrhosis. The mortality rate increased with greater severity or longer period of having sarcopenia. Increasing awareness about the importance of sarcopenia in patients with cirrhosis among stakeholders must be prioritized.Copyright © 2021. Published by Elsevier B.V.

JTD Keywords: alcohol associated liver disease, alcohol-associated liver disease, cirrhosis, failure, frailty, impact, list, mass, model, mortality, prognosis, prognostic value, sarcopenia, severe muscle depletion, skeletal muscle index, Alcohol-associated liver disease, Cirrhosis, Liver-transplant candidates, Prognosis, Sarcopenia, Skeletal muscle index


Torp, N, Israelsen, M, Madsen, B, Lutz, P, Jansen, C, Strassburg, C, Mortensen, C, Knudsen, AW, Sorensen, GL, Holmskov, U, Schlosser, A, Thiele, M, Trebicka, J, Krag, A, (2021). Level of MFAP4 in ascites independently predicts 1-year transplant-free survival in patients with cirrhosis Jhep Rep 3, 100287

Background & Aims: Prognostic models of cirrhosis underestimate disease severity for patients with cirrhosis and ascites. Microfibrillar-associated protein 4 (MFAP4) is an extracellular matrix protein linked to hepatic neoangiogenesis and fibrogenesis. We investigated ascites MFAP4 as a predictor of transplant-free survival in patients with cirrhosis and ascites. Methods: A dual-centre observational study of patients with cirrhosis and ascites recruited consecutively in relation to a paracentesis was carried out. Patients were followed up for 1 year, until death or liver transplantation (LTx). Ascites MFAP4 was tested with the model for end-stage liver disease (MELD-Na), CLIF Consortium Acute Decompensation (CLIF-C AD), and Child-Pugh score in Cox regression models. Results: Ninety-three patients requiring paracentesis were included. Median ascites MFAP4 was 29.7 U/L [22.3–41.3], and MELD-Na was 19 [16–23]. A low MELD-Na score (<20) was observed in 49 patients (53%). During follow-up, 20 patients died (22%), and 6 received LTx (6%). High ascites MFAP4 (>29.7 U/L) was associated with 1-year transplant-free survival (p = 0.002). In Cox regression, ascites MFAP4 and MELD-Na independently predicted 1-year transplant-free survival (hazard ratio [HR] = 0.97, p = 0.03, and HR = 1.08, p = 0.01, respectively). Ascites MFAP4 and CLIF-C AD also predicted survival independently (HR = 0.96, p = 0.02, and HR = 1.05, p = 0.03, respectively), whereas only ascites MFAP4 did, controlling for the Child-Pugh score (HR = 0.97, p = 0.03, and HR = 1.18, p = 0.16, respectively). For patients with MELD-Na <20, ascites MFAP4 but not ascites protein predicted 1-year transplant-free survival (HR 0.91, p = 0.02, and HR = 0.94, p = 0.17, respectively). Conclusions: Ascites MFAP4 predicts 1-year transplant-free survival in patients with cirrhosis and ascites. In patients with low MELD-Na scores, ascites MFAP4, but not total ascites protein, significantly predicted 1-year transplant-free survival. Lay summary: Patients with cirrhosis who have fluid in the abdomen, ascites, are at an increased risk of death and in need for liver transplantation. Our study identified patients with ascites and a poor prognosis by measuring microfibrillar associated protein 4 (MFAP4), a protein present in the abdominal fluid. Patients with low levels of the MFAP4 protein are at particularly increased risk of death or liver transplantation, suggesting that clinical care should be intensified in this group of patients. © 2021 The Authors

JTD Keywords: biomarker, clif-c ad, clif consortium acute decompensation, cps, child-pugh score, crp, c-reactive protein, ct, computed tomography, decompensated, ecm, extracellular matrix, fibrosis, fluid protein, gfr, glomerular filtration rate, hr, hazard ratio, inr, internationalised normal ratio, liver disease, liver-cirrhosis, ltx, liver transplantation, markers, meld-na, model for end-stage liver disease, mfap4, microfibrillar associated protein 4, mortality, nash, non-alcoholic steatohepatitis, natural-history, prognosis, risk-factors, sbp, spontaneous bacterial peritonitis, scores, stage, Biomarker, Decompensated, Egfr, estimated gfr, Fibrosis, Liver disease, Mortality, Prognosis, Spontaneous bacterial peritonitis


Blaya, D, Pose, E, Coll, M, Lozano, JJ, Graupera, I, Schierwagen, R, Jansen, C, Castro, P, Fernandez, S, Sidorova, J, Vasa-Nicotera, M, Sola, E, Caballeria, J, Trebicka, J, Gines, P, Sancho-Bru, P, (2021). Profiling circulating microRNAs in patients with cirrhosis and acute-on-chronic liver failure Jhep Rep 3, 100233

Background & Aims: MicroRNAs (miRNAs) circulate in several body fluids and can be useful biomarkers. The aim of this study was to identify blood-circulating miRNAs associated with cirrhosis progression and acute-on-chronic liver failure (ACLF). Methods: Using high-throughput screening of 754 miRNAs, serum samples from 45 patients with compensated cirrhosis, decompensated cirrhosis, or ACLF were compared with those from healthy individuals (n = 15). miRNA levels were correlated with clinical parameters, organ failure, and disease progression and outcome. Dysregulated miRNAs were evaluated in portal and hepatic vein samples (n = 33), liver tissues (n = 17), and peripheral blood mononuclear cells (PBMCs) (n = 16). Results: miRNA screening analysis revealed that circulating miRNAs are dysregulated in cirrhosis progression, with 51 miRNAs being differentially expressed among all groups of patients. Unsupervised clustering and principal component analysis indicated that the main differences in miRNA expression occurred at decompensation, showing similar levels in patients with decompensated cirrhosis and those with ACLF. Of 43 selected miRNAs examined for differences among groups, 10 were differentially expressed according to disease progression. Moreover, 20 circulating miRNAs were correlated with model for end-stage liver disease and Child-Pugh scores. Notably, 11 dysregulated miRNAs were associated with kidney or liver failure, encephalopathy, bacterial infection, and poor outcomes. The most severely dysregulated miRNAs (i.e. miR-146a5p, miR-26a-5p, and miR-191-5p) were further evaluated in portal and hepatic vein blood and liver tissue, but showed no differences. However, PBMCs from patients with cirrhosis showed significant downregulation of miR-26 and miR-146a, suggesting a extrahepatic origin of some circulating miRNAs. Conclusions: This study is a repository of circulating miRNA data following cirrhosis progression and ACLF. Circulating miRNAs were profoundly dysregulated during the progression of chronic liver disease, were associated with failure of several organs and could have prognostic utility. Lay summary: Circulating miRNAs are small molecules in the blood that can be used to identify or predict a clinical condition. Our study aimed to identify miRNAs for use as biomarkers in patients with cirrhosis or acute-on-chronic liver failure. Several miRNAs were found to be dysregulated during the progression of disease, and some were also related to organ failure and disease-related outcomes. (C) 2021 The Author(s). Published by Elsevier B.V. on behalf of European Association for the Study of the Liver (EASL).

JTD Keywords: aclf, acute-on-chronic liver failure, alt, alanine aminotransferase, ast, aspartate aminotransferase, biomarkers, chronic liver disease, cxcl10, c-x-c motif chemokine ligand 10, ef clif, european foundation for the study of chronic liver failure, foxo, forkhead box o, inr, international normalised ratio, ldh, lactate dehydrogenase, liver decompensation, mapk, mitogen-activated protein kinase, meld, model for end-stage liver disease, nash, non-alcoholic steatohepatitis, non-coding rnas, pbmcs, peripheral blood mononuclear cells, pca, principal component analysis, tgf, transforming growth factor, tips, transjugular intrahepatic portosystemic shunt, Biomarkers, Chronic liver disease, Expression, Liver decompensation, Markers, Mir-146a, Non-coding rnas, Qpcr, quantitative pcr


Queck, A., Fink, A. F., Sirait-Fischer, E., Rüschenbaum, S., Thomas, D., Snodgrass, R. G., Geisslinger, G., Baba, H. A., Trebicka, J., Zeuzem, S., Weigert, A., Lange, C. M., Brüne, B., (2020). Alox12/15 deficiency exacerbates, while lipoxin A4 ameliorates hepatic inflammation in murine alcoholic hepatitis Frontiers in Immunology 11, 1447

Alcoholism is one of the leading and increasingly prevalent reasons of liver associated morbidity and mortality worldwide. Alcoholic hepatitis (AH) constitutes a severe disease with currently no satisfying treatment options. Lipoxin A4 (LXA4), a 15-lipoxygenase (ALOX15)-dependent lipid mediator involved in resolution of inflammation, showed promising pre-clinical results in the therapy of several inflammatory diseases. Since inflammation is a main driver of disease progression in alcoholic hepatitis, we investigated the impact of endogenous ALOX15-dependent lipid mediators and exogenously applied LXA4 on AH development. A mouse model for alcoholic steatohepatitis (NIAAA model) was tested in Alox12/15+/+ and Alox12/15−/− mice, with or without supplementation of LXA4. Absence of Alox12/15 aggravated parameters of liver disease, increased hepatic immune cell infiltration in AH, and elevated systemic neutrophils as a marker for systemic inflammation. Interestingly, i.p. injections of LXA4 significantly lowered transaminase levels only in Alox12/15−/− mice and reduced hepatic immune cell infiltration as well as systemic inflammatory cytokine expression in both genotypes, even though steatosis progressed. Thus, while LXA4 injection attenuated selected parameters of disease progression in Alox12/15−/− mice, its beneficial impact on immunity was also apparent in Alox12/15+/+ mice. In conclusion, pro-resolving lipid mediators may be beneficial to reduce inflammation in alcoholic hepatitis.

JTD Keywords: Alcoholic hepatitis, Arachidonate 12/15-lipoxygenase (Alox12/15), Lipoxin A4, Resolution of inflammation, Specialized pro-resolving lipid mediators (SPMs)


Quiliano, Miguel, Pabón, Adriana, Moles, Ernest, Bonilla-Ramirez, Leonardo, Fabing, Isabelle, Fong, Kim Y., Nieto-Aco, Diego A., Wright, David W., Pizarro, Juan C., Vettorazzi, Ariane, López de Cerain, Adela, Deharo, Eric, Fernàndez-Busquets, Xavier, Garavito, Giovanny, Aldana, Ignacio, Galiano, Silvia, (2018). Structure-activity relationship of new antimalarial 1-aryl-3-susbtituted propanol derivatives: Synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery European Journal of Medicinal Chemistry 152, 489-514

Design, synthesis, structure-activity relationship, cytotoxicity studies, in silico drug-likeness, genotoxicity screening, and in vivo studies of new 1-aryl-3-substituted propanol derivatives led to the identification of nine compounds with promising in vitro (55, 56, 61, 64, 66, and 70–73) and in vivo (66 and 72) antimalarial profiles against Plasmodium falciparum and Plasmodium berghei. Compounds 55, 56, 61, 64, 66 and 70–73 exhibited potent antiplasmodial activity against chloroquine-resistant strain FCR-3 (IC50s < 0.28 μM), and compounds 55, 56, 64, 70, 71, and 72 showed potent biological activity in chloroquine-sensitive and multidrug-resistant strains (IC50s < 0.7 μM for 3D7, D6, FCR-3 and C235). All of these compounds share appropriate drug-likeness profiles and adequate selectivity indexes (77 < SI < 184) as well as lack genotoxicity. In vivo efficacy tests in a mouse model showed compounds 66 and 72 to be promising candidates as they exhibited significant parasitemia reductions of 96.4% and 80.4%, respectively. Additional studies such as liver stage and sporogony inhibition, target exploration of heat shock protein 90 of P. falciparum, targeted delivery by immunoliposomes, and enantiomer characterization were performed and strongly reinforce the hypothesis of 1-aryl-3-substituted propanol derivatives as promising antimalarial compounds.

JTD Keywords: Antiplasmodial, Antimalarial, Arylamino alcohol, Multi-stage activity, Hsp90, Enantiomer separation


Manca, M. L., Castangia, I., Matricardi, P., Lampis, S., Fernàndez-Busquets, X., Fadda, A. M., Manconi, M., (2014). Molecular arrangements and interconnected bilayer formation induced by alcohol or polyalcohol in phospholipid vesicles Colloids and Surfaces B: Biointerfaces 117, 360-367

A self-assembled hybrid phospholipid vesicular system containing various penetration enhancers - ethanol, Transcutol and propylenglycol - was prepared and characterized. The effects of the different alcohol or polyalcohols structure and their concentration on the features of the assembled vesicles were evaluated using a combination of different techniques, including cryo-transmission electron microscopy, laser light scattering, differential scanning calorimetry, small- and wide-angle X-ray scattering and rheological analysis. These techniques allow explaining the structural rearrangements of the bilayer assembly due to the alcohol or polyalcohol addition. X-ray scattering studies showed that such addition at the highest concentration (20%) allowed structure modification to oligolamellar vesicles and a bilayer transition to interdigitated phase. Rheological studies confirmed the importance of alcohol or polyalcohol in the structuring dispersions probably due to a partial tilting of phosphatidylcholine acyl chains forming interdigitated and interconnected bilayer vesicles.

JTD Keywords: (Poly)alcohols, Cryo-TEM, DSC, Liposomes, Penetration Enhancer containing Vesicle (PEVs), Rheology, SAXS