by Keyword: Animal models
van der Lande, Glenn J M, Casas-Torremocha, Diana, Manasanch, Arnau, Dalla Porta, Leonardo, Gosseries, Olivia, Alnagger, Naji, Barra, Alice, Mejias, Jorge F, Panda, Rajanikant, Riefolo, Fabio, Thibaut, Aurore, Bonhomme, Vincent, Thirion, Bertrand, Clasca, Francisco, Gorostiza, Pau, Sanchez-Vives, Maria V, Deco, Gustavo, Laureys, Steven, Zamora-Lopez, Gorka, Annen, Jitka, (2024). Brain state identification and neuromodulation to promote recovery of consciousness Brain Commun 6, fcae362
Experimental and clinical studies of consciousness identify brain states (i.e. quasi-stable functional cerebral organization) in a non-systematic manner and largely independent of the research into brain state modulation. In this narrative review, we synthesize advances in the identification of brain states associated with consciousness in animal models and physiological (sleep), pharmacological (anaesthesia) and pathological (disorders of consciousness) states of altered consciousness in humans. We show that in reduced consciousness the frequencies in which the brain operates are slowed down and that the pattern of functional communication is sparser, less efficient, and less complex. The results also highlight damaged resting-state networks, in particular the default mode network, decreased connectivity in long-range connections and especially in the thalamocortical loops. Next, we show that therapeutic approaches to treat disorders of consciousness, through pharmacology (e.g. amantadine, zolpidem), and (non-) invasive brain stimulation (e.g. transcranial direct current stimulation, deep brain stimulation) have shown partial effectiveness in promoting consciousness recovery. Although some features of conscious brain states may improve in response to neuromodulation, targeting often remains non-specific and does not always lead to (behavioural) improvements. The fields of brain state identification and neuromodulation of brain states in relation to consciousness are showing fascinating developments that, when integrated, might propel the development of new and better-targeted techniques for disorders of consciousness. We here propose a therapeutic framework for the identification and modulation of brain states to facilitate the interaction between the two fields. We propose that brain states should be identified in a predictive setting, followed by theoretical and empirical testing (i.e. in animal models, under anaesthesia and in patients with a disorder of consciousness) of neuromodulation techniques to promote consciousness in line with such predictions. This framework further helps to identify where challenges and opportunities lay for the maturation of brain state research in the context of states of consciousness. It will become apparent that one angle of opportunity is provided through the addition of computational modelling. Finally, it aids in recognizing possibilities and obstacles for the clinical translation of these diagnostic techniques and neuromodulation treatment options across both the multimodal and multi-species approaches outlined throughout the review.
JTD Keywords: (disorders of) consciousness, Anaesthesia, Animal model, Animal models, Area induces reanimation, Brain states, Direct-current stimulation, Disorder, Electrical-stimulation, Functional connectivity, General-anesthesia, Neuromodulation, Propofol-induced loss, Thalamic-stimulation, Transcranial magnetic stimulation, Vegetative state
Placci, M, Giannotti, MI, Muro, S, (2023). Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders Advanced Drug Delivery Reviews 197, 114683
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that consti-tute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their per-formance, and important items to consider for their clinical translation. Overall, polymeric nanocon-structs hold considerable promise to advance treatment for LSDs.(c) 2023 Elsevier B.V. All rights reserved.
JTD Keywords: cellular and animal models, enzyme replacement therapy, lysosomal storage disorders, nanoemulsions, nanoparticles, Beta-glucuronidase deficiency, Blood-brain-barrier, Cellular and animal models, Central-nervous-system, Drug delivery systems, Enzyme replacement therapy, Feline gm1 gangliosidosis, Human acid sphingomyelinase, Human alpha-galactosidase, Humans, Lysosomal storage diseases, Lysosomal storage disorders, Lysosomes, Mucopolysaccharidosis type-ii, Nanoemulsions, Nanoparticles, Neuronal ceroid-lipofuscinosis, Niemann-pick-disease, Pluripotent stem-cells, Polymer-based drug delivery systems, Polymers, Tissue distribution
Torres, M., Martinez-Garcia, M. A., Campos-Rodriguez, F., Gozal, D., Montserrat, J. M., Navajas, D., Farré, R., Almendros, I., (2020). Lung cancer aggressiveness in an intermittent hypoxia murine model of postmenopausal sleep apnea Menopause 27, (6), 706-713
Objective:
Intermittent hypoxia (IH)—a hallmark of obstructive sleep apnea (OSA)—enhances lung cancer progression in mice via altered host immune responses that are also age and sex-dependent. However, the interactions of menopause with IH on tumor malignant properties remain unexplored. Here, we aimed to investigate lung cancer outcomes in the context of ovariectomy (OVX)-induced menopause in a murine model of OSA.
Methods:
Thirty-four female mice (C57BL/6, 12-week-old) were subjected to bilateral OVX or to Sham intervention. Six months after surgery, mice were pre-exposed to either IH or room air (RA) for 2 weeks. Then, 105 lung carcinoma (LLC1) cells were injected subcutaneously in the left flank, with IH or RA exposures continued for 4 weeks. Tumor weight, tumor invasion, and spontaneous lung metastases were assessed. Tumor-associated macrophages (TAMs) were isolated and subjected to flow cytometry polarity evaluation along with assessment of TAMs modulation of LLC1 proliferation in vitro. To determine the effect of IH and OVX on each experimental variable, a two-way analysis of variance was performed.
Results:
IH and OVX promoted a similar increase in tumor growth (2-fold; P = 0.05 and 1.74-fold; P < 0.05, respectively), and OVX-IH further increased it. Regarding lung metastasis, the concurrence of OVX in mice exposed to IH enhanced the number of metastases (23.7 ± 8.0) in comparison to those without OVX (7.9 ± 2.8; P < 0.05). The pro-tumoral phenotype of TAMS, assessed as M2/M1 ratio, was increased in OVX (0.06 ± 0.01; P < 0.01) and IH (0.06 ± 0.01; P < 0.01) compared with sham/RA conditions (0.14 ± 0.03). The co-culture of TAMS with naive LLC1 cells enhanced their proliferation only under IH.
Conclusion:
In female mice, both the IH that is characteristically present in OSA and OVX as a menopause model emerge as independent contributors that promote lung cancer aggressiveness and seemingly operate through alterations in the host immune response.
JTD Keywords: Animal models, Cancer progression, Intermittent hypoxia, Menopause, Obstructive sleep apnea, Ovariectomy
Garcia-Puig, A., Mosquera, J. L., Jiménez-Delgado, S., García-Pastor, C., Jorba, I., Navajas, D., Canals, F., Raya, A., (2019). Proteomics analysis of extracellular matrix remodeling during zebrafish heart regeneration Molecular & cellular proteomics 18, (9), 1745-1755
Adult zebrafish, in contrast to mammals, are able to regenerate their hearts in response to injury or experimental amputation. Our understanding of the cellular and molecular bases that underlie this process, although fragmentary, has increased significantly over the last years. However, the role of the extracellular matrix (ECM) during zebrafish heart regeneration has been comparatively rarely explored. Here, we set out to characterize the ECM protein composition in adult zebrafish hearts, and whether it changed during the regenerative response. For this purpose, we first established a decellularization protocol of adult zebrafish ventricles that significantly enriched the yield of ECM proteins. We then performed proteomic analyses of decellularized control hearts and at different times of regeneration. Our results show a dynamic change in ECM protein composition, most evident at the earliest (7 days post-amputation) time-point analyzed. Regeneration associated with sharp increases in specific ECM proteins, and with an overall decrease in collagens and cytoskeletal proteins. We finally tested by atomic force microscopy that the changes in ECM composition translated to decreased ECM stiffness. Our cumulative results identify changes in the protein composition and mechanical properties of the zebrafish heart ECM during regeneration.
JTD Keywords: Animal models, Atomic force microscopy, Cardiovascular disease, Cardiovascular function or biology, Developmental biology, Extracellular matrix, Heart regeneration, Proteomic analysis
Noguera-Ortega, Estela, Secanella-Fandos, Silvia, Eraña, Hasier, Gasión, Jofre, Rabanal, Rosa M., Luquin, Marina, Torrents, Eduard, Julián, Esther, (2016). Nonpathogenic Mycobacterium brumae inhibits bladder cancer growth in vitro, ex vivo, and in vivo European Urology Focus , 2, (1), 67-76
Background
Bacillus Calmette-Guérin (BCG) prevents tumour recurrence and progression in non–muscle-invasive bladder cancer (BC). However, common adverse events occur, including BCG infections.
Objective
To find a mycobacterium with similar or superior antitumour activity to BCG but with greater safety.
Design
In vitro, ex vivo, and in vivo comparisons of the antitumour efficacy of nonpathogenic mycobacteria and BCG.
Intervention
The in vitro antitumour activity of a broad set of mycobacteria was studied in seven different BC cell lines. The most efficacious was selected and its ex vivo capacity to activate immune cells and its in vivo antitumour activity in an orthotopic murine model of BC were investigated.
Outcome measurements and statistical analysis
Growth inhibition of BC cells was the primary outcome measurement. Parametric and nonparametric tests were use to analyse the in vitro results, and a Kaplan-Meier test was applied to measure survival in mycobacteria-treated tumour-bearing mice.
Results and limitations
Mycobacterium brumae is superior to BCG in inhibiting low-grade BC cell growth, and has similar effects to BCG against high-grade cells. M. brumae triggers an indirect antitumour response by activating macrophages and the cytotoxic activity of peripheral blood cells against BC cells. Although no significant differences were observed between BCG and M. brumae treatments in mice, M. brumae treatment prolonged survival in comparison to BCG treatment in tumour-bearing mice. In contrast to BCG, M. brumae does not persist intracellularly or in tumour-bearing mice, so the risk of infection is lower.
Conclusions
Our preclinical data suggest that M. brumae represents a safe and efficacious candidate as a therapeutic agent for non–muscle-invasive BC.
Patient summary
We investigated the antitumour activity of nonpathogenic mycobacteria in in vitro and in vivo models of non–muscle-invasive bladder cancer. We found that Mycobacterium brumae effectively inhibits bladder cancer growth and helps the host immune system to eradicate cancer cells, and is a promising agent for antitumour immunotherapy.
JTD Keywords: Animal models, Bacillus Calmette-Guérin, Cytokines, Immunomodulation, Immunotherapy, Mycobacteria, Urothelial cell line
Almendros, I., Farré, R., Torres, M., Bonsignore, M. R., Dalmases, M., Ramírez, J., Navajas, D., Montserrat, J. M., (2011). Early and mid-term effects of obstructive apneas in myocardial injury and inflammation Sleep Medicine , 12, (10), 1037-1040
Background: Obstructive sleep apnea (OSA) is associated with cardiovascular disorders, but the different comorbidities in OSA patients make it difficult to know their specific effects on the development of cardiovascular injury. The aim of the present study was to investigate whether recurrent obstructive apneas could lead to myocardial injury. Methods: Thirty-six male Sprague-Dawley rats (300-350. g) were either acutely (3. h) or sustainably (5. h/day, for 10. days) subjected to obstructive apneas with a pattern of 15. s each, 60. apneas/h. Corresponding control groups were formed for the acute and sustained models. To assess the induction of systemic inflammation, IL1-β was measured in plasma. Ventricular tissue injury was evaluated by histological techniques (presence of inflammatory cell infiltration, eosin autofluorescence, and detection of apoptosis). Results: After 3. h of obstructive apneas, a significant increase in IL1-β (64.9. ±. 29.6. ng/μl) were observed with respect to the controls (7.3. ±. 1.0. ng/μl), but no myocardial injury was present. Conversely to the acute model, the systemic inflammation triggered by obstructive apneas for 10. days was reduced. However, the percentage of area with enhanced eosin autofluorescence and of apoptotic cells (1.83. ±. 0.35% and 24.4. ±. 1.5%, respectively) was increased when compared to the control group (0.72. ±. 0.20% and 5.0. ±. 2.8%, respectively). Conclusions: This study suggests that obstructive apneas are a potential source of early systemic and ventricular inflammation and myocardial cell injury after sustained apneas application, which could represent an initial phase in the progression of heart disease associated with OSA.
JTD Keywords: Animal models, Inflammation, Myocardial injury, Obstructive sleep apnea