DONATE

Publications

by Keyword: Arg-gly-asp

Martínez-Miguel, M, Castellote-Borrell, M, Köber, M, Kyvik, AR, Tomsen-Melero, J, Vargas-Nadal, G, Muñoz, J, Pulido, D, Cristóbal-Lecina, E, Passemard, S, Royo, M, Mas-Torrent, M, Veciana, J, Giannotti, MI, Guasch, J, Ventosa, N, Ratera, I, (2022). Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion Acs Applied Materials & Interfaces 14, 48179-48193

The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.

JTD Keywords: activation, arg-gly-asp (rgd), cell adhesion, extracellular-matrix, growth, integrins, ligands, nanopatterns, quatsomes, scaffolds, self-assembled monolayers, surface engineering, tissue engineering, Arg-gly-asp (rgd), Cell adhesion, Integrins, Nano-structured surfaces, Nanovesicles, Quatsomes, Self-assembled monolayers, Surface engineering, Tissue engineering


Navarro, M., Benetti, E. M., Zapotoczny, S., Planell, J. A., Vancso, G. J., (2008). Buried, covalently attached RGD peptide motifs in poly(methacrylic acid) brush layers: The effect of brush structure on cell adhesion Langmuir 24, (19), 10996-11002

Iniferter-mediated surface-initiated photopolymerization was used to graft poly(methacrylic acid) (PMAA) brush layers obtained from surface-attached iniferters in self-assembled monolayers to a gold surface. The tethered chains were subsequently functionalized with the cell-adhesive arginine-glycine-aspartic acid (RGD) motif. The modified brushes were extended by reinitiating the polymerization to obtain an additional layer of PMAA, thereby burying the peptide-functionalized segments inside the brush structure. Contact angle measurements and Fourier transform infrared (FTIR) spectroscopy were employed to characterize the wettability and the chemical properties of these platforms. Time of flight secondary ion mass spectroscopy (TOF-SIMS) measurements were performed to monitor the chemical composition of the polymer layer as a function of the distance to the gold surface and obtain information concerning the depth of the RGD motifs inside the brush structure. The brush thickness was evaluated as a function of the polymerization (i.e.. UV-irradiation) time with atomic force microscopy (AFM) and ellipsometry. Cell adhesion tests employing human osteoblasts were performed on substrates with the RGD peptides exposed at the surface as well as covered by a PMAA top brush layer. Immunofluorescence studies demonstrated a variation of the cell morphology as a function of the position of the peptide units along the grafted chains.

JTD Keywords: Ion mass-spectrometry, Transfer radical polymerization, Asymmetric diblock copolymers, Arg-gly-asp, Swelling behaviour, Endothelial-cells, Thin-films, fibronectin, Surfaces, SIMS