DONATE

Publications

by Keyword: self-assembled monolayers

Englert, J, Palà, M, Witzdam, L, Rayatdoost, F, Grottke, O, Lligadas, G, Rodriguez-Emmenegger, C, (2023). Green Solvent-Based Antifouling Polymer Brushes Demonstrate Excellent Hemocompatibility Langmuir 39, 18476-18485

Medical devices are crucial for patient care, yet even the best biomaterials lead to infections and unwanted activation of blood coagulation, potentially being life-threatening. While hydrophilic polymer brushes are the best coatings to mitigate these issues, their reliance on fossil raw materials underscores the urgency of bio-based alternatives. In this work, we introduce polymer brushes of a green solvent-based monomer, prohibiting protein adsorption, bacterial colonization, and blood clot formation at the same level as fossil-based polymer brushes. The polymer brushes are composed of N,N-dimethyl lactamide acrylate (DMLA), can be polymerized in a controlled manner, and show strong hydrophilicity as determined by thermodynamic analysis of the surface tension components. The contact of various challenging protein solutions results in repellency on the poly(DMLA) brushes. Furthermore, the poly(DMLA) brushes completely prevent the adhesion and colonization of Escherichia coli. Remarkably, upon blood contact, the poly(DMLA) brushes successfully prevent the formation of a fibrin network and leukocyte adhesion on the surface. While showcasing excellent antifouling properties similar to those of N-hydroxypropyl methacrylamide (HPMA) polymer brushes as one of the best antifouling coatings, the absence of hydroxyl groups prevents activation of the complement system in blood. We envision the polymer brushes to contribute to the future of hemocompatible coatings.

JTD Keywords: blood-plasma, coatings, contact, fossil, poly(2-methacryloyloxyethyl phosphorylcholine), protein adsorption, resistance, self-assembled monolayers, sulfobetaine, Surface-energy components


Martínez-Miguel M, Castellote-Borrell M, Köber M, Kyvik AR, Tomsen-Melero J, Vargas-Nadal G, Muñoz J, Pulido D, Cristóbal-Lecina E, Passemard S, Royo M, Mas-Torrent M, Veciana J, Giannotti MI, Guasch J, Ventosa N, Ratera I, (2022). Hierarchical Quatsome-RGD Nanoarchitectonic Surfaces for Enhanced Integrin-Mediated Cell Adhesion Acs Applied Materials & Interfaces 14, 48179-48193

The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.

JTD Keywords: activation, arg-gly-asp (rgd), cell adhesion, extracellular-matrix, growth, integrins, ligands, nanopatterns, quatsomes, scaffolds, self-assembled monolayers, surface engineering, tissue engineering, Arg-gly-asp (rgd), Cell adhesion, Integrins, Nano-structured surfaces, Nanovesicles, Quatsomes, Self-assembled monolayers, Surface engineering, Tissue engineering


Zaffino, R. L., Mir, M., Samitier, J., (2017). Oligonucleotide probes functionalization of nanogap electrodes Electrophoresis , 38, (21), 2712-2720

Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications.

JTD Keywords: Biosensor bioelectronics, DNA electrophoresis, Nanogap electrodes, Self-assembled monolayers, Site-selective deposition


Parra-Cabrera, C., Samitier, J., Homs-Corbera, A., (2016). Multiple biomarkers biosensor with just-in-time functionalization: Application to prostate cancer detection Biosensors and Bioelectronics 77, 1192-1200

We present a novel lab-on-a-chip (LOC) device for the simultaneous detection of multiple biomarkers using simple voltage measurements. The biosensor functionalization is performed in-situ, immediately before its use, facilitating reagents storage and massive devices fabrication. Sensitivity, limit of detection (LOD) and limit of quantification (LOQ) are tunable depending on the in-chip flown sample volumes. As a proof-of-concept, the system has been tested and adjusted to quantify two proteins found in blood that are susceptible to be used combined, as a screening tool, to diagnose prostate cancer (PCa): prostate-specific antigen (PSA) and spondin-2 (SPON2). This combination of biomarkers has been reported to be more specific for PCa diagnostics than the currently accepted but rather controversial PSA indicator. The range of detection for PSA and SPON2 could be adjusted to the clinically relevant range of 1 to 10. ng/ml. The system was tested for specificity to the evaluated biomarkers. This multiplex system can be modified and adapted to detect a larger quantity of biomarkers, or different ones, of relevance to other specific diseases.

JTD Keywords: Adjustable sensing, Impedance measurements, In situ functionalization, Microfluidics, Prostate specific antigen, Self-assembled monolayers


Penon, O., Novo, S., Duran, S., Ibanez, E., Nogues, C., Samitier, J., Duch, M., Plaza, J. A., Perez-Garcia, L., (2012). Efficient biofunctionalization of polysilicon barcodes for adhesion to the zona pellucida of mouse embryos Bioconjugate Chemistry , 23, (12), 2392-2402

Cell tracking is an emergent area in nano-biotechnology, promising the study of individual cells or the identification of populations of cultured cells. In our approach, microtools designed for extracellular tagging are prepared, because using biofunctionalized polysilicon barcodes to tag cell membranes externally avoids the inconveniences of cell internalization. The crucial covalent biofunctionalization process determining the ultimate functionality was studied in order to find the optimum conditions to link a biomolecule to a polysilicon barcode surface using a self-assembled monolayer (SAM) as the connector. Specifically, a lectin (wheat germ agglutinin, WGA) was used because of its capacity to recognize some specific carbohydrates present on the surface of most mammalian cells. Self-assembled monolayers were prepared on polysilicon surfaces including aldehyde groups as terminal functions to study the suitability of their covalent chemical bonding to WGA. Some parameters, such as the polysilicon surface roughness or the concentration of WGA, proved to be crucial for successful biofunctionalization and bioactivity. The SAMs were characterized by contact angle measurements, time-of-flight secondary ion mass spectrometry (TOF-SIMS), laser desorption/ionization time-of-flight mass spectrometry (LDI-TOF MS), and atomic force microscopy (AFM). The biofunctionalization step was also characterized by fluorescence microscopy and, in the case of barcodes, by adhesion experiments to the zona pellucida of mouse embryos. These experiments showed high barcode retention rates after 96 h of culture as well as high embryo viability to the blastocyst stage, indicating the robustness of the biofunctionalization and, therefore, the potential of these new microtools to be used for cell tagging.

JTD Keywords: Self-assembled monolayers, Wheat-germ-agglutinin, Protein immobilization strategies, Mass-spectrometry, Cell-surface, Petide, Binding, Identifications, Nanoparticles, Recognition


Tort, N., Salvador, J. P., Avino, A., Eritja, R., Comelles, J., Martinez, E., Samitier, J., Marco, M. P., (2012). Synthesis of steroid-oligonucleotide conjugates for a DNA site-encoded SPR immunosensor Bioconjugate Chemistry , 23, (11), 2183-2191

The excellent self-assembling properties of DNA and the excellent specificity of the antibodies to detect analytes of small molecular weight under competitive conditions have been combined in this study. Three oligonucleotide sequences (N(1)up, N(2)up, and N(3)up) have been covalently attached to three steroidal haptens (8, hG, and 13) of three anabolic-androgenic steroids (AAS), stanozolol (ST), tetrahydrogestrinone (THG), and boldenone (B), respectively. The synthesis of steroid oligonucleotide conjugates has been performed by the reaction of oligonucleotides carrying amino groups with carboxyl acid derivatives of steroidal haptens. Due to the chemical nature of the steroid derivatives, two methods for coupling the haptens and the ssDNA have been studied: a solid-phase coupling strategy and a solution-phase coupling strategy. Specific antibodies against ST, THG, and B have been used in this study to asses the possibility of using the self-assembling properties of the DNA to prepare biofunctional SPR gold chips based on the immobilization of haptens, by hybridization with the complementary oligonucleotide strands possessing SH groups previously immobilized. The capture of the steroid oligonucleotide conjugates and subsequent binding of the specific antibodies can be monitored on the sensogram due to variations produced on the refractive index on top of the gold chip. The resulting steroid oligonucleotide conjugates retain the hybridization and specific binding properties of oligonucleotides and haptens as demonstrated by thermal denaturation experiments and surface plasmon resonance (SPR).

JTD Keywords: Directed protein immobilization, Plasmon resonance biosensor, Self-assembled monolayers, Label-free, Serum samples, Assay, Immunoassays, Antibodies, Progress, Binding


Simao, C., Mas-Torrent, M., Crivillers, N., Lloveras, V., Artés, Juan Manuel, Gorostiza, Pau, Veciana, Jaume, Rovira, C., (2011). A robust molecular platform for non-volatile memory devices with optical and magnetic responses Nature Chemistry , 3, (5), 359-364

Bistable molecules that behave as switches in solution have long been known. Systems that can be reversibly converted between two stable states that differ in their physical properties are particularly attractive in the development of memory devices when immobilized in substrates. Here, we report a highly robust surface-confined switch based on an electroactive, persistent organic radical immobilized on indium tin oxide substrates that can be electrochemically and reversibly converted to the anion form. This molecular bistable system behaves as an extremely robust redox switch in which an electrical input is transduced into optical as well as magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has exceptionally high long-term stability and excellent reversibility and reproducibility, makes it a very promising platform for non-volatile memory devices.

JTD Keywords: Self-assembled monolayers, Chromophore-based monolayers, Ultrathin platinum films, Carbon free-radicals, Per-million levels, Polychlorotriphenylmethyl radicals, Electron-transfer, Surface, Logic, Quantification


Martinez, Elena, Samitier, Josep, (2011). Soft lithography and variants Generating micro- and nanopatterns on polymeric materials (ed. del Campo, Aranzazu , Arzt, Eduard), Wiley-VCH Verlag GmbH&Co (Weinheim) , 57-66

Toromanov, Georgi, González-García, Cristina, Altankov, George, Salmerón-Sánchez, Manuel, (2010). Vitronectin activity on polymer substrates with controlled -OH density Polymer 51, (11), 2329-2336

Vitronectin (VN) adsorption on a family of model substrates consisting of copolymers of ethyl acrylate and hydroxyl ethylacrylate in different ratios (to obtain a controlled surface density of -OH groups) was investigated by Atomic Force Microscopy (AFM). It is shown that the fraction of the substrate covered by the protein depends strongly on the amount of hydroxyl groups in the sample and it monotonically decreases as the -OH density increases. Isolated globular-like VN molecules are observed on the surfaces with the higher OH density. As the fraction of hydroxyl groups decreases, aggregates of 3-5 VN molecules are observed on the sample. Overall cell morphology, focal adhesion formation and actin cytoskeleton development are investigated to assess the biological activity of the adsorbed VN on the different surfaces. Dermal fibroblast cells show excellent material interaction on the more hydrophobic samples (OH contents lower than 0.5), which reveals enhanced VN activity on this family of substrates as compared with other extracellular matrix proteins (e.g., fibronectin and fibrinogen).

JTD Keywords: Copolymers, Vitronectin, AFM, Self-assembled monolayers, Cell-adhesion, Thermal transitions, Protein adsorption, Surfaces, Fibronectin, Biomaterials, Attachment, Fibrinogen


Olmedo, Ivonne, Araya, Eyleen, Sanz, Fausto, Medina, Elias, Arbiol, Jordi, Toledo, Pedro, Àlvarez-Lueje, Alejandro, Giralt, Ernest, Kogan, Marcelo J., (2008). How changes in the sequence of the peptide CLPFFD-NH2 can modify the conjugation and stability of gold nanoparticles and their affinity for beta-amyloid fibrils Bioconjugate Chemistry , 19, (6), 1154-1163

In a previous work, we studied the interaction of β-amyloid fibrils (Aβ) with gold nanoparticles (AuNP) conjugated with the peptide CLPFFD-NH2. Here, we studied the effect of changing the residue sequence of the peptide CLPFFD-NH2 on the efficiency of conjugation to AuNP, the stability of the conjugates, and the affinity of the conjugates to the Aβ fibrils. We conjugated the AuNP with CLPFFD-NH2 isomeric peptides (CDLPFF-NH2 and CLPDFF-NH2) and characterized the resulting conjugates with different techniques including UV−Vis, TEM, EELS, XPS, analysis of amino acids, agarose gel electrophoresis, and CD. In addition, we determined the proportion of AuNP bonded to the Aβ fibrils by ICP-MS. AuNP-CLPFFD-NH2 was the most stable of the conjugates and presented more affinity for Aβ fibrils with respect to the other conjugates and bare AuNP. These findings help to better understand the way peptide sequences affect conjugation and stability of AuNP and their interaction with Aβ fibrils. The peptide sequence, the steric effects, and the charge and disposition of hydrophilic and hydrophobic residues are crucial parameters when considering the design of AuNP peptide conjugates for biomedical applications.

JTD Keywords: Self-assembled monolayers, Aggregation, Dispersions, Adsorption, Particles, Design, Size


Mills, C. A., Pla, M., Martin, C., Lee, M., Kuphal, M., Sisquella, X., Martinez, E., Errachid, A., Samitier, J., (2007). Structured thin organic active layers and their use in electrochemical biosensors Measurement & Control , 40, (3), 88-91