by Keyword: BAM
Calo, Annalisa, Eleta-Lopez, Aitziber, Ondarcuhu, Thierry, Verdaguer, Albert, Bittner, Alexander M, (2021). Nanoscale wetting of single viruses Molecules 26, 5184
The epidemic spread of many viral infections is mediated by the environmental conditions and influenced by the ambient humidity. Single virus particles have been mainly visualized by atomic force microscopy (AFM) in liquid conditions, where the effect of the relative humidity on virus topography and surface cannot be systematically assessed. In this work, we employed multi-frequency AFM, simultaneously with standard topography imaging, to study the nanoscale wetting of individual Tobacco Mosaic virions (TMV) from ambient relative humidity to water condensation (RH > 100%). We recorded amplitude and phase vs. distance curves (APD curves) on top of single virions at various RH and converted them into force vs. distance curves. The high sensitivity of multifrequency AFM to visualize condensed water and sub-micrometer droplets, filling gaps between individual TMV particles at RH > 100%, is demonstrated. Dynamic force spectroscopy allows detecting a thin water layer of thickness ⁓1 nm, adsorbed on the outer surface of single TMV particles at RH < 60%.
JTD Keywords: amplitude-modulation am-afm, atomic-force microscopy, capillary, force reconstruction, multifrequency afm, nanoscale wetting, persistence, reconstruction, relative-humidity, surfaces, tobacco mosaic virus (tmv), tobamovirus, transmission, water, Amplitude-modulation am-afm, Force reconstruction, Multifrequency afm, Nanoscale wetting, Tobacco mosaic virus (tmv), Tobacco mosaic virus (tmv), nanoscale wetting, Tobacco-mosaic-virus
Hoyo, J., Torrent-Burgués, J., Guaus, E., (2012). Biomimetic monolayer films of monogalactosyldiacylglycerol incorporating ubiquinone Journal of Colloid and Interface Science , 384, (1), 189-197
Ubiquinone and plastoquinone are two of the main electron and proton shuttle molecules in biological systems, and monogalactosyldiacylglycerol (MGDG) is the most abundant lipid in the thylakoid membrane of chloroplasts. Saturated MGDG, ubiquinone-10 (UQ) and MGDG:UQ mixed monolayers at the air/water interface have been studied using surface pressure-area isotherms and Brewster Angle Microscopy. Moreover, the transferred Langmuir-Blodgett films have been observed by Atomic Force Microscopy. The results show that MGDG:UQ mixtures present more fluid phase than pure MGDG, indicating a higher order degree for the later. It is also observed an important influence of UQ on the MGDG matrix before UQ collapse pressure and a low influence after this event, due to UQ expulsion from the MGDG matrix. This expulsion leads to a similar remaining UQ content for all the tested mixtures, indicating a limiting content of this molecule in the MGDG matrix at high surface pressures. The thermodynamic studies confirm the stability of the MGDG:UQ mixtures at low surface pressures, although presenting a non-ideal behaviour. Results point to consider UQ as a good candidate for studies of artificial photosynthesis.
JTD Keywords: AFM, BAM, Biomimetic films, Langmuir-Blodgett film, Monogalactosyldiacylglycerol, Ubiquinone