by Keyword: Cerebral palsy
Rubio Ballester, B., Mura, A., Maier, M., Tobella-Pareja, Laura, Alfayate-Domingo, D., Gimeno-Esteve, M. F., Aguilar, A., Verschure, P., (2019). Adaptive VR-based rehabilitation to prevent deterioration in adults with cerebral palsy Application of VR and Advanced Technology in Pediatric Populations International Conference on Virtual Rehabilitation 2019 (ICVR 2019) , ISVR (Tel Aviv, Israel) , 1-7
Cerebral palsy (CP) is a disabling life-long condition progressively impeding a patient’s independence. Although incident rates are high, a clear understanding of the disease is missing. CP is characterized by several motor disorders and sensory or perceptive comorbidities. This multifaceted nature complicates proper diagnosis and hampers the search for possible treatments. During adolescence and adulthood, individuals with CP experience a drastic deterioration in gross motor control, independence, and quality of life. There is poor evidence that physical therapy promotes the retention of function through
aging, and no clinical studies exist that explore the potential of VRbased training to prevent deterioration. In this pilot randomized controlled trial, we expose 14 adults with CP to the Rehabilitation Gaming System (RGS) and examine its usability, effectiveness, and acceptability. Our results show that the RGS difficulty adaptation algorithm automatically matches the patients' impairment level as captured by clinical scales (Barthel and Box & Blocks). The clinical effectiveness and acceptability of the RGS and conventional therapy were comparable. We conclude that VR-based physical therapy as an adjunct to usual treatment may be a promising approach for the prevention of deterioration in adolescents and adults with CP.
JTD Keywords: Cerebral palsy, Virtual realitY, Motor function, Physical therapy, Rehabilitation
Lambrecht, Stefan, Urra, Oiane, Grosu, Svetlana, Pérez, Soraya, (2014). Emerging rehabilitation in cerebral palsy Biosystems & Biorobotics Emerging Therapies in Neurorehabilitation (ed. Pons, José L., Torricelli, Diego), Springer Berlin Heidelberg (London, UK) 4, 23-49
Cerebral Palsy (CP) is the most frequent disability affecting children. Although the effects of CP are diverse this chapter focuses on the impaired motor control of children suffering from spastic diplegia, particularly in the lower limb. The chapter collects the most relevant techniques that are used or might be useful to overcome the current limitations existing in the diagnosis and rehabilitation of CP. Special emphasis is placed on the role that emerging technologies can play in this field. Knowing in advance the type and site of brain injury could assist the clinician in selecting the appropriate therapy. In this context, neuroimaging techniques are being recommended as an evaluation tool in children with CP; we describe a variety of imaging technologies such as Magnetic Resonance Imaging (MRI), Diffusion Tensor Imaging (DTI), etc. But creating new knowledge in itself is not enough; there must be a transfer from progress through research to advances in the clinical field. The classic therapeutic approach of CP thus hampers the optimal rehabilitation of the targeted component. Traditional therapies may be optimized if complemented with treatments. We try to collect a wide range of emerging technologies and provide some criteria to select the adequate technology based on the characteristics of the neurological injury. For example, exoskeleton based over-ground gait training is suggested to be more effective than treadmill-based gait training. So, we suggest a new point of view combining different technologies in order to provide the foundations of a rational design of the individual rehabilitation strategy.
JTD Keywords: Cerebral palsy, Robotics, Neurostimulation, Neuroimaging, Myoelectric signals