by Keyword: Chronic wound

Pérez-Rafael S, Ivanova K, Stefanov I, Puiggalí J, del Valle LJ, Todorova K, Dimitrov P, Hinojosa-Caballero D, Tzanov T, (2021). Nanoparticle-driven self-assembling injectable hydrogels provide a multi-factorial approach for chronic wound treatment Acta Biomaterialia 134, 131-143

Chronic wounds represent a major health burden and drain on medical system. Efficient wound repair is only possible if the dressing materials target simultaneously multiple factors involved in wound chronicity, such as deleterious proteolytic and oxidative enzymes and high bacterial load. Here we develop multifunctional hydrogels for chronic wound management through self-assembling of thiolated hyaluronic acid (HA-SH) and bioactive silver-lignin nanoparticles (Ag@Lig NPs). Dynamic and reversible interactions between the polymer and Ag@Lig NPs yield hybrid nanocomposite hydrogels with shear-thinning and self-healing properties, coupled to zero-order kinetics release of antimicrobial silver in response to infection-related hyalurodinase. The hydrogels inhibit the major enzymes myeloperoxidase and matrix metalloproteinases responsible for wound chronicity in a patient's wound exudate. Furthermore, the lignin-capped AgNPs provide the hydrogel with antioxidant properties and strong antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa. The nanocomposite hydrogels are not toxic to human keratinocytes after 7 days of direct contact. Complete tissue remodeling and restoration of skin integrity is demonstrated in vivo in a diabetic mouse model. Hematological analysis reveals lack of wound inflammation due to bacterial infection or toxicity, confirming the potential of HA-SH/Ag@Lig NPs hydrogels for chronic wound management. Statement of significance: Multifunctional hydrogels are promising materials to promote healing of complex wounds. Herein, we report simple and versatile route to prepare biocompatible and multifunctional self-assembled hydrogels for efficient chronic wound treatment utilizing polymer-nanoparticle interactions. Hybrid silver-lignin nanoparticles (Ag@Lig NPs) played both: i) structural role, acting as crosslinking nodes in the hydrogel and endowing it with shear-thinning (ability to flow under applied shear stress) and self-healing properties, and ii) functional role, imparting strong antibacterial and antioxidant activity. Remarkably, the in situ self-assembling of thiolated hyaluronic acid and Ag@Lig NPs yields nanocomposite hydrogels able to simultaneously inhibits the major factors involved in wound chronicity, namely the overexpressed deleterious proteolytic and oxidative enzymes, and high bacterial load.

JTD Keywords: catechol, chronic wounds, dressing materials, inhibition, mechanism, nano-enabled hydrogels, polyphenols, promogran, self-assembling, silver-lignin nanoparticles, systems, tannins, Chronic wounds, Degradation, Dressing materials, Nano-enabled hydrogels, Self-assembling, Silver-lignin nanoparticles, Thiolated hyaluronic acid

Perez-Amodio, Soledad, Rubio, Nuria, Vila, Olaia F, Navarro-Requena, Claudia, Castano, Oscar, Sanchez-Ferrero, Aitor, Marti-Munoz, Joan, Alsina-Giber, Merce, Blanco, Jeronimo, Engel, Elisabeth, (2021). Polymeric Composite Dressings Containing Calcium-Releasing Nanoparticles Accelerate Wound Healing in Diabetic Mice Advances In Wound Care 10, 301-316

Objective: Wound healing is a complex process that involves the interaction between different cell types and bioactive factors. Impaired wound healing is characterized by a loss in synchronization of these interactions, resulting in nonhealing chronic wounds. Chronic wounds are a socioeconomic burden, one of the most prominent clinical manifestations of diabetes, however, they lack satisfactory treatment options. The objective of this study was to develop polymeric composites that deliver ions having wound healing properties and evaluate its performance using a pressure ulcer model in diabetic mice. Approach: To develop a polymeric composite wound dressing containing ion-releasing nanoparticles for chronic wound healing. This composite was chemically and physically characterized and evaluated using a pressure ulcer wound model in diabetic (db/db) mice to explore their potential as novel wound dressing. Results: This dressing exhibits a controlled ion release and a goodin vitrobioactivity. The polymeric composite dressing treatment stimulates angiogenesis, collagen synthesis, granulation tissue formation, and accelerates wound closure of ischemic wounds created in diabetic mice. In addition, the performance of the newly designed composite is remarkably better than a commercially available dressing frequently used for the treatment of low-exuding chronic wounds. Innovation: The developed nanoplatforms are cell- and growth factor free and control the host microenvironment resulting in enhanced wound healing. These nanoplatforms are available by cost-effective synthesis with a defined composition, offering an additional advantage in potential clinical application. Conclusion: Based on the obtained results, these polymeric composites offer an optimum approach for chronic wound healing without adding cells or external biological factors.

JTD Keywords: angiogenesis, bioactive dressings, chronic wounds, Angiogenesis, Bioactive dressings, Bioactive glass, Bioglass, Cells, Chronic wounds, Diabetes, Endothelial growth-factor, Expression, Hydrogel, Induction

Blanco-Fernandez, B, Castano, O, Mateos-Timoneda, MA, Engel, E, Perez-Amodio, S, (2021). Nanotechnology Approaches in Chronic Wound Healing Advances In Wound Care 10, 234-256

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.

JTD Keywords: chronic, diabetes, liposomes, nanofibers, nanoparticles, Chronic, Chronic wound, Diabetes, Diabetic wound, Diabetic-rats, Dressings, Drug mechanism, Extracellular-matrix, Growth-factor, Human, In-vitro, Liposome, Liposomes, Mesenchymal stem-cells, Metal nanoparticle, Nanofiber, Nanofibers, Nanofibrous scaffolds, Nanoparticles, Nanotechnology, Nonhuman, Polyester, Polymer, Polysaccharide, Priority journal, Protein, Review, Self assembled protein nanoparticle, Silk fibroin, Skin wounds, Wound healing, Wound healing promoting agent