DONATE

Publications

by Keyword: diabetes

Munoz-Galan, H, Molina, BG, Bertran, O, Perez-Madrigal, MM, Aleman, C, (2022). Combining rapid and sustained insulin release from conducting hydrogels for glycemic control br European Polymer Journal 181, 111670

Innovative insulin delivery systems contemplate combining multi-pharmacokinetic profiles for glycemic control. Two device configurations have been designed for the controlled release of insulin using the same chemical compounds. The first insulin delivery system, which displays a rapid release response that, in addition, is enhanced on a short time scale by electrical stimulation, consists on an insulin layer sandwiched between a conducting poly(3,4-ethylenedioxythiophene) (PEDOT) film and a poly-gamma-glutamic acid (gamma-PGA) hydrogel. The second system is constituted by gamma-PGA hydrogel loaded with insulin and PEDOT nanoparticles by in situ gelation. In this case, the insulin release, which only starts after the degradation of the hydrogel over time (i.e. on a long time scale), is slow and sustained. The combination of an on-demand and fast release profile with a sustained and slow profile, which act on different time scales, would result in a very efficient regulation of diabetes therapy in comparison to current systems, allowing to control both fast and sustained glycemic events. Considering that the two systems developed in this work are based on the same chemical components, future work will be focused on the combination of the two kinetic profiles by re-engineering a unique insulin release device using gamma-PGA, PEDOT and insulin.

JTD Keywords: Conducting polymer, Constant, Diabetes, Diabetes-mellitus, Drug-delivery, Electrodes, Electrostimulation, Glucose-responsive hydrogels, Hydrogel, Molecular dynamics, Molecular-dynamics, Nanogels, Nanoparticles, Poly(3,4-ethylenedioxythiophene), Risk


Clua-Ferre, L, De Chiara, F, Rodriguez-Comas, J, Comelles, J, Martinez, E, Godeau, AL, Garcia-Alaman, A, Gasa, R, Ramon-Azcon, J, (2022). Collagen-Tannic Acid Spheroids for beta-Cell Encapsulation Fabricated Using a 3D Bioprinter Advanced Materials Technologies 7, 2101696

Type 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.© 2022 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH.

JTD Keywords: 3d bioprinter, beta-cell, biomaterial, collagen, encapsulation, mechanics, microspheres, survival, 3d bioprinter, ?-cell, Advanced material technologies, Biocompatibility, Cell encapsulations, Cells, Collagen, Cross-linking, Cytology, Drug delivery, Encapsulation, Fabrication, Flavonoids, Gelation, In-vitro, Insulin injections, Insulin release, Microspheres, Tannic acid, Tannins, Throughput, Tissue grafts, Type 1 diabetes, Β‐cell


Garreta, E, Prado, P, Stanifer, ML, Monteil, V, Marco, A, Ullate-Agote, A, Moya-Rull, D, Vilas-Zornoza, A, Tarantino, C, Romero, JP, Jonsson, G, Oria, R, Leopoldi, A, Hagelkruys, A, Gallo, M, González, F, Domingo-Pedrol, P, Gavaldà, A, del Pozo, CH, Ali, OH, Ventura-Aguiar, P, Campistol, JM, Prosper, F, Mirazimi, A, Boulant, S, Penninger, JM, Montserrat, N, (2022). A diabetic milieu increases ACE2 expression and cellular susceptibility to SARS-CoV-2 infections in human kidney organoids and patient cells Cell Metabolism 34, 857-873

It is not well understood why diabetic individuals are more prone to develop severe COVID-19. To this, we here established a human kidney organoid model promoting early hallmarks of diabetic kidney disease development. Upon SARS-CoV-2 infection, diabetic-like kidney organoids exhibited higher viral loads compared with their control counterparts. Genetic deletion of the angiotensin-converting enzyme 2 (ACE2) in kidney organoids under control or diabetic-like conditions prevented viral detection. Moreover, cells isolated from kidney biopsies from diabetic patients exhibited altered mitochondrial respiration and enhanced glycolysis, resulting in higher SARS-CoV-2 infections compared with non-diabetic cells. Conversely, the exposure of patient cells to dichloroacetate (DCA), an inhibitor of aerobic glycolysis, resulted in reduced SARS-CoV-2 infections. Our results provide insights into the identification of diabetic-induced metabolic programming in the kidney as a critical event increasing SARS-CoV-2 infection susceptibility, opening the door to the identification of new interventions in COVID-19 pathogenesis targeting energy metabolism.Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

JTD Keywords: complications, coronavirus, cultured-cells, disease, distal tubule, mouse, protein, reveals, spike, Ace2, Angiotensin-converting enzyme 2, Angiotensin-converting enzyme-2, Covid-19, Diabetes 2, Human kidney organoids, Sars-cov-2


Rodriguez-Comas, J, Velasco-Mallorqui, F, Ramon-Azcon, J, (2022). CELLULOSE-BASED SCAFFOLDS ENHANCE PSEUDOISLETS FORMATION AND FUNCTIONALITY (Abstract 2021) Tissue Engineering Part a 28, S573-S573

The limitations of obtaining pancreatic islets from differentsources as animal models or human donors complicate the study oftype 2 diabetes (T2D) in vitro. Immortalized cell lines as the in-sulin-producing INS1Eb-cells appeared as a valid alternative tomodel insulin-related diseases. The formation of 3D structures topromote cell aggregations from single cells is a handy tool togenerate resemblance islet-like pseudoislets. Traditionally usedhydrogel encapsulation methods induce a lack of nutrient and ox-ygen diffusion for pancreatic tissue engineering. Here, we usecryogelation technology to develop a more resemblance scaffoldwith the mechanical and physical properties needed to engineerpancreatic tissue. This study shows that carboxymethyl cellulose(CMC) cryogels prompted cells to generateb-cell clusters. Thehigh porosity achieved with this approach allowed us to createspecific range pseudoislets. However, gelatin-based scaffolds didnot induce this cell organization. Pseudoislets formed within CMC-scaffolds showed cell viability for up to 7 days and responded betterto the glucose over conventional monolayer cultures. Overall, ourresults demonstrate that CMC-scaffolds can be used to control theorganization and function of insulin-producingb-cells, represent-ing a suitable technique to generateb-cell clusters to study pan-creatic islet function.

JTD Keywords: Cellulose, Cryogel, Diabetes


Rodríguez-Comas, Júlia, Ramón-Azcón, Javier, (2022). Islet-on-a-chip for the study of pancreatic beta-cell function In Vitro Models 1, 41-57

Diabetes mellitus is a significant public health problem worldwide. It encompasses a group of chronic disorders characterized by hyperglycemia, resulting from pancreatic islet dysfunction or as a consequence of insulin-producing ?-cell death. Organ-on-a-chip platforms have emerged as technological systems combining cell biology, engineering, and biomaterial technological advances with microfluidics to recapitulate a specific organ’s physiological or pathophysiological environment. These devices offer a novel model for the screening of pharmaceutical agents and to study a particular disease. In the field of diabetes, a variety of microfluidic devices have been introduced to recreate native islet microenvironments and to understand pancreatic ?-cell kinetics in vitro. This kind of platforms has been shown fundamental for the study of the islet function and to assess the quality of these islets for subsequent in vivo transplantation. However, islet physiological systems are still limited compared to other organs and tissues, evidencing the difficulty to study this “organ” and the need for further technological advances. In this review, we summarize the current state of islet-on-a-chip platforms that have been developed so far. We recapitulate the most relevant studies involving pancreatic islets and microfluidics, focusing on the molecular and cellular-scale activities that underlie pancreatic ?-cell function.

JTD Keywords: pancreatic islets, Diabetes, Microchips, Microfluidics


Perez-Amodio, S, Rubio, N, Vila, OF, Navarro-Requena, C, Castaño, O, Sanchez-Ferrero, A, Marti-Munoz, J, Alsina-Giber, M, Blanco, J, Engel, E, (2021). Polymeric Composite Dressings Containing Calcium-Releasing Nanoparticles Accelerate Wound Healing in Diabetic Mice Advances In Wound Care 10, 301-316

Objective: Wound healing is a complex process that involves the interaction between different cell types and bioactive factors. Impaired wound healing is characterized by a loss in synchronization of these interactions, resulting in nonhealing chronic wounds. Chronic wounds are a socioeconomic burden, one of the most prominent clinical manifestations of diabetes, however, they lack satisfactory treatment options. The objective of this study was to develop polymeric composites that deliver ions having wound healing properties and evaluate its performance using a pressure ulcer model in diabetic mice. Approach: To develop a polymeric composite wound dressing containing ion-releasing nanoparticles for chronic wound healing. This composite was chemically and physically characterized and evaluated using a pressure ulcer wound model in diabetic (db/db) mice to explore their potential as novel wound dressing. Results: This dressing exhibits a controlled ion release and a goodin vitrobioactivity. The polymeric composite dressing treatment stimulates angiogenesis, collagen synthesis, granulation tissue formation, and accelerates wound closure of ischemic wounds created in diabetic mice. In addition, the performance of the newly designed composite is remarkably better than a commercially available dressing frequently used for the treatment of low-exuding chronic wounds. Innovation: The developed nanoplatforms are cell- and growth factor free and control the host microenvironment resulting in enhanced wound healing. These nanoplatforms are available by cost-effective synthesis with a defined composition, offering an additional advantage in potential clinical application. Conclusion: Based on the obtained results, these polymeric composites offer an optimum approach for chronic wound healing without adding cells or external biological factors.

JTD Keywords: angiogenesis, bioactive dressings, chronic wounds, Angiogenesis, Bioactive dressings, Bioactive glass, Bioglass, Cells, Chronic wounds, Diabetes, Endothelial growth-factor, Expression, Hydrogel, Induction


Blanco-Fernandez, B, Castano, O, Mateos-Timoneda, MA, Engel, E, Perez-Amodio, S, (2021). Nanotechnology Approaches in Chronic Wound Healing Advances In Wound Care 10, 234-256

Significance: The incidence of chronic wounds is increasing due to our aging population and the augment of people afflicted with diabetes. With the extended knowledge on the biological mechanisms underlying these diseases, there is a novel influx of medical technologies into the conventional wound care market. Recent Advances: Several nanotechnologies have been developed demonstrating unique characteristics that address specific problems related to wound repair mechanisms. In this review, we focus on the most recently developed nanotechnology-based therapeutic agents and evaluate the efficacy of each treatment in in vivo diabetic models of chronic wound healing. Critical Issues: Despite the development of potential biomaterials and nanotechnology-based applications for wound healing, this scientific knowledge is not translated into an increase of commercially available wound healing products containing nanomaterials. Future Directions: Further studies are critical to provide insights into how scientific evidences from nanotechnology-based therapies can be applied in the clinical setting.

JTD Keywords: chronic, diabetes, liposomes, nanofibers, nanoparticles, Chronic, Chronic wound, Diabetes, Diabetic wound, Diabetic-rats, Dressings, Drug mechanism, Extracellular-matrix, Growth-factor, Human, In-vitro, Liposome, Liposomes, Mesenchymal stem-cells, Metal nanoparticle, Nanofiber, Nanofibers, Nanofibrous scaffolds, Nanoparticles, Nanotechnology, Nonhuman, Polyester, Polymer, Polysaccharide, Priority journal, Protein, Review, Self assembled protein nanoparticle, Silk fibroin, Skin wounds, Wound healing, Wound healing promoting agent


Lanzalaco, S., Fabregat, G., Muñoz-Galan, H., Cabrera, J., Muñoz-Pascual, X., Llorca, J., Alemán, C., (2020). Recycled low-density polyethylene for noninvasive glucose monitoring: A proposal for plastic recycling that adds technological value ACS Sustainable Chemistry and Engineering 8, (33), 12554-12560

In this work, we present a successful strategy to convert recycled LDPE films, which usually end up in landfills or leak into the environment, into an advanced biomedical product. More specifically, LDPE films for food packaging have been treated with atmosphere corona discharge plasma for electrochemical detection of glucose. Enzyme-functionalized sensors manufactured using such recycled materials, which act as a mediator capable of electrocommunicating with the glucose oxidase (GOx) enzyme, are able to detect glucose concentrations in sweat and are fully compatible with the levels of such bioanalytes in both healthy and diabetic patients. Covalent immobilization of the GOx enzyme on the plasma-treated LDPE films has been successfully performed using the carbodiimide method, as proved by X-ray photoelectron spectroscopy. Then, the electronic communication between the deeply buried active site of the GOx and the reactive excited species formed at the surface of the plasma-treated LDPE has been demonstrated by linear sweep voltammetry. Finally, cyclic voltammetry in artificial sweat has been used to show that the LDPE-functionalized sensor has a linear response in the concentration of range of 50 μM to 1 mM with a limit of detection of 375 μA·μM–1·cm–2. Comparison of the performance of sensors prepared using recycled (i.e. with additives) and pristine (i.e. without additives) LDPE indicates that the utilization of the former does not require any pretreatment to eliminate additives. The present strategy demonstrates a facile approach for recycling LDPE waste into a high value-added product, which will potentially pave the way for the treatment of plastic waste in the future. Noninvasive glucose sensors based on recycled LDPE may play a crucial role in monitoring diabetes in underdeveloped regions.

JTD Keywords: Biosensors, Diabetes monitoring, High-value recycling, Plasma treatment, Sweat sensors


Oller-Moreno, Sergio, Cominetti, Ornella, Galindo, Antonio Núñez, Irincheeva, Irina, Corthésy, John, Astrup, Arne, Saris, Wim H. M., Hager, Jörg, Kussmann, Martin, Dayon, Loïc, (2018). The differential plasma proteome of obese and overweight individuals undergoing a nutritional weight loss and maintenance intervention PROTEOMICS - Clinical Applications 12, (1), 1600150

Purpose : The nutritional intervention program “DiOGenes” focuses on how obesity can be prevented and treated from a dietary perspective. We generated differential plasma proteome profiles in the DiOGenes cohort to identify proteins associated with weight loss and maintenance and explore their relation to body mass index, fat mass, insulin resistance and sensitivity. Experimental Design : Relative protein quantification was obtained at baseline and after combined weight loss/maintenance phases using isobaric tagging and MS/MS. A Welch t-test determined proteins differentially present after intervention. Protein relationships with clinical variables were explored using univariate linear models, considering collection center, gender and age as confounding factors. Results : 473 subjects were measured at baseline and end of the intervention; 39 proteins were longitudinally differential. Proteins with largest changes were sex hormone-binding globulin, adiponectin, C-reactive protein, calprotectin, serum amyloid A, and proteoglycan 4 (PRG4), whose association with obesity and weight loss is known. We identified new putative biomarkers for weight loss/maintenance. Correlation between PRG4 and proline-rich acidic protein 1 (PRAP1) variation and Matsuda insulin sensitivity increment was showed. Conclusions and Clinical Relevance : MS-based proteomic analysis of a large cohort of non-diabetic overweight and obese individuals concomitantly identified known and novel proteins associated with weight loss and maintenance.

JTD Keywords: Biomarker, Diabetes, Large-scale study, Mass spectrometry, Obesity, Proteomics


Juanola-Feliu, Esteve, Colomer-Farrarons, Jordi, Miribel-Català, Pere, González-Piñero, Manel, Samitier, Josep, (2014). Nano-enabled implantable device for glucose monitoring Implantable Bioelectronics (ed. Katz, Evgeny), Wiley-VCH Verlag GmbH & Co. KGaA (Weinheim, Germany) , 247-263

This chapter contains sections titled: * Introduction * Biomedical Devices for In Vivo Analysis * Conclusions and Final Recommendations * References

JTD Keywords: Technology transfer, Innovation management, Nanotechnology, Nanobiosensor, Diabetes, Biomedical device, Implantable biosensors


Juanola-Feliu, E., Colomer-Farrarons, J., Miribel-Català , P., Samitier, J., Valls-Pasola, J., (2012). Market challenges facing academic research in commercializing nano-enabled implantable devices for in-vivo biomedical analysis Technovation , 32, (3-4), 193-204

This article reports on the research and development of a cutting-edge biomedical device for continuous in-vivo glucose monitoring. This entirely public-funded process of technological innovation has been conducted at the University of Barcelona within a context of converging technologies involving the fields of medicine, physics, chemistry, biology, telecommunications, electronics and energy. The authors examine the value chain and the market challenges faced by in-vivo implantable biomedical devices based on nanotechnologies. In so doing, they trace the process from the point of applied research to the final integration and commercialization of the product, when the social rate of return from academic research can be estimated. Using a case-study approach, the paper also examines the high-tech activities involved in the development of this nano-enabled device and describes the technology and innovation management process within the value chain conducted in a University-Hospital-Industry-Administration-Citizens framework. Here, nanotechnology is seen to represent a new industrial revolution, boosting the biomedical devices market. Nanosensors may well provide the tools required for investigating biological processes at the cellular level in vivo when embedded into medical devices of small dimensions, using biocompatible materials, and requiring reliable and targeted biosensors, high speed data transfer, safely stored data, and even energy autonomy.

JTD Keywords: Biomedical device, Diabetes, Innovation management, Nanobiosensor, Nanotechnology, Research commercialization, Technology transfer, Academic research, Applied research, Barcelona, Biocompatible materials, Biological process, Biomedical analysis, Biomedical devices, Cellular levels, Converging technologies, Glucose monitoring, High-speed data transfer, Implantable biomedical devices, Implantable devices, In-vivo, Industrial revolutions, Innovation management, Medical Devices, Nanobiosensor, Rate of return, Research and development, Technological innovation, Value chains, Biological materials, Biomedical engineering, Biosensors, Commerce, Data transfer, Earnings, Engineering education, Glucose, Implants (surgical), Industrial research, Innovation, Medical problems, Nanosensors, Nanotechnology, Technology transfer, Equipment


Perán, M., Sánchez-Ferrero, A., Tosh, D., Marchal, J. A., Lopez, E., Alvarez, P., Boulaiz, H., Rodríguez-Serrano, F., Aranega, A., (2011). Ultrastructural and molecular analyzes of insulin-producing cells induced from human hepatoma cells Cytotherapy , 13, (2), 193-200

Background aims. Diabetes type I is an autoimmune disease characterized by the destruction of pancreatic insulin-producing (beta-) cells and resulting in external insulin dependence for life. Islet transplantation represents a potential treatment for diabetes but there is currently a shortage of suitable organs donors. To augment the supply of donors, different strategies are required to provide a potential source of beta-cells. These sources include embryonic and adult stem cells as well as differentiated cell types. The main goal of this study was to induce the transdifferentiation (or conversion of one type cell to another) of human hepatoma cells (HepG2 cells) to insulin-expressing cells based on the exposure of HepG2 cells to an extract of rat insulinoma cells (RIN). Methods. HepG2 cells were first transiently permeabilized with Streptolysin O and then exposed to a cell extract obtained from RIN cells. Following transient exposure to the RIN extract, the HepG2 cells were cultured for 3 weeks. Results. Acquisition of the insulin-producing cell phenotype was determined on the basis of (i) morphologic and (ii) ultrastructural observations, (iii) immunologic detection and (iv) reverse transcription (RT)-polymerase chain reaction (PCR) analysis. Conclusions. This study supports the use of cell extract as a feasible method for achieve transdifferentiation of hepatic cells to insulin-producing cells.

JTD Keywords: Beta-cells, Diabetes, Insulin-producing cells, Transdifferentiation


Valente, T., Gella, A., Fernàndez-Busquets, X., Unzeta, M., Durany, N., (2010). Immunohistochemical analysis of human brain suggests pathological synergism of Alzheimer's disease and diabetes mellitus Neurobiology of Disease , 37, (1), 67-76

It has been extensively reported that diabetes mellitus (DM) patients have a higher risk of developing Alzheimer's disease (AD). but a mechanistic connection between both pathologies has not been provided so far Carbohydrate-derived advanced glycation endproducts (AGEs) have been implicated in the chronic complications of DM and have been reported to play an important role in the pathogenesis of AD. The earliest histopathological manifestation of AD is the apparition of extracellular aggregates of the amyloid beta peptide (A beta). To investigate possible correlations between AGEs and A beta aggregates with both pathologies. we have performed an immuhistochemical study in human post-mortem samples of AD, AD with diabetes (ADD). diabetic and nondemented controls ADD brains showed increased number of A beta dense plaques and receptor for AGEs (RACE)-positive and Tau-positive cells, higher AGEs levels and major microglial activation, compared to AD brain. Our results indicate that ADD patients present a significant increase of cell damage through a RAGE-dependent mechanism, suggesting that AGEs may promote the generation of an oxidative stress vicious cycle, which can explain the severe progression of patients with both pathologies.

JTD Keywords: Abeta, Alzheimer's disease, Rage, Ages, Diabetes, Immunohistochemistry, Advanced glycation endproducts, Beta-amyloid peptide, End-products, Oxidative stress, Advanced glycosylation, Synaptic dysfunction, Cross-linking