DONATE

Publications

by Keyword: Dinitrogen

Sans, Jordi, Arnau, Marc, Bosque, Ricard, Turon, Pau, Aleman, Carlos, (2024). Synthesis of urea from CO2 and N2 fixation under mild conditions using polarized hydroxyapatite as a catalyst Sustainable Energy & Fuels 8, 1473-1482

Polarized hydroxyapatite (p-HAp) has been used as a catalyst for the synthesis of urea coupling N-2, CO2 and water under mild reaction conditions when compared to classical nitrogen fixation reactions, such as the Haber-Bosch process. The reaction of 3 bar of N-2 and 3 bar of CO2 under UV illumination at 120 degrees C (for 48 h) results in a urea yield of 1.5 +/- 0.1 mmol per gram of catalyst (g(c)) with a selectivity close to 80%, whereas the reaction is not successful without UV irradiation. However, the addition of small amounts of NO (314 ppm) produces 15.2 +/- 0.6 and 4.6 +/- 0.4 mmol g(c)(-1) with and without UV illumination, respectively, with the selectivity in both cases being close to 100%. As nitrogen fixation without UV irradiation using p-HAp as a catalyst is a challenge, studies with NO have been conducted varying the reaction conditions (time, pressure and temperature). The results suggest a mechanism based on the production of NH4+ through the oxidation of N-2.

JTD Keywords: Carbon dioxide, Carbon,dinitrogen,reduction,nitrogen,ammonia,dioxid, Catalyst selectivity, Condition, Haber-bosch process, Hydroxyapatite, Irradiation, Metabolism, Mild reaction conditions, Nitrogen fixation, Pressure and temperature, Reaction conditions, Time pressures, Time-temperature, Urea, Uv illuminations, Without uv irradiations, ]+ catalyst


Sans, J, Arnau, M, Roa, JJ, Turon, P, Alernan, C, (2022). Tailorable Nanoporous Hydroxyapatite Scaffolds for Electrothermal Catalysis Acs Applied Nano Materials 5, 8526-8536

Polarized hydroxyapatite (HAp) scaffolds with customized architecture at the nanoscale have been presented as a green alternative to conventional catalysts used for carbon and dinitrogen fixation. HAp printable inks with controlled nanoporosity and rheological properties have been successfully achieved by incorporating Pluronic hydrogel. Nanoporous scaffolds with good mechanical properties, as demonstrated by means of the nanoindentation technique, have been obtained by a sintering treatment and the posterior thermally induced polarization process. Their catalytic activity has been evaluated by considering three different key reactions (all in the presence of liquid water): (1) the synthesis of amino acids from gas mixtures of N-2, CO2, and CH4; (2) the production of ethanol from gas mixtures of CO2 and CH4; and (3) the synthesis of ammonia from N-2 gas. Comparison of the yields obtained by using nanoporous and nonporous (conventional) polarized HAp catalysts shows that both the nanoporosity and water absorption capacity of the former represent a drawback when the catalytic reaction requires auxiliary coating layers, as for example for the production of amino acids. This is because the surface nanopores achieved by incorporating Pluronic hydrogel are completely hindered by such auxiliary coating layers. On the contrary, the catalytic activity improves drastically for reactions in which the HAp-based scaffolds with enhanced nanoporosity are used as catalysts. More specifically, the carbon fixation from CO2 and CH4 to yield ethanol improves by more than 3000% when compared with nonporous HAp catalyst. Similarly, the synthesis of ammonia by dinitrogen fixation increases by more than 2000%. Therefore, HAp catalysts based on nanoporous scaffolds exhibit an extraordinary potential for scalability and industrial utilization for many chemical reactions, enabling a feasible green chemistry alternative to catalysts based on heavy metals.

JTD Keywords: Amino acids, Amino-acids, Ammonium production, Bone, Carbon fixation, Composites, Constitutive phases, Decarbonization, Dinitrogen, Ditrogen fixation, Elastic-modulus, Electrophotosynthesis, Ethanol production, Hardness, Indentation, Nanoindentation, Pluronic hydrogel, Polarized hydroxyapatite