by Keyword: Irradiation
Sans, Jordi, Arnau, Marc, Bosque, Ricard, Turon, Pau, Aleman, Carlos, (2024). Synthesis of urea from CO2 and N2 fixation under mild conditions using polarized hydroxyapatite as a catalyst Sustainable Energy & Fuels 8, 1473-1482
Polarized hydroxyapatite (p-HAp) has been used as a catalyst for the synthesis of urea coupling N-2, CO2 and water under mild reaction conditions when compared to classical nitrogen fixation reactions, such as the Haber-Bosch process. The reaction of 3 bar of N-2 and 3 bar of CO2 under UV illumination at 120 degrees C (for 48 h) results in a urea yield of 1.5 +/- 0.1 mmol per gram of catalyst (g(c)) with a selectivity close to 80%, whereas the reaction is not successful without UV irradiation. However, the addition of small amounts of NO (314 ppm) produces 15.2 +/- 0.6 and 4.6 +/- 0.4 mmol g(c)(-1) with and without UV illumination, respectively, with the selectivity in both cases being close to 100%. As nitrogen fixation without UV irradiation using p-HAp as a catalyst is a challenge, studies with NO have been conducted varying the reaction conditions (time, pressure and temperature). The results suggest a mechanism based on the production of NH4+ through the oxidation of N-2.
JTD Keywords: Carbon dioxide, Carbon,dinitrogen,reduction,nitrogen,ammonia,dioxid, Catalyst selectivity, Condition, Haber-bosch process, Hydroxyapatite, Irradiation, Metabolism, Mild reaction conditions, Nitrogen fixation, Pressure and temperature, Reaction conditions, Time pressures, Time-temperature, Urea, Uv illuminations, Without uv irradiations, ]+ catalyst
Abramov, A, Maiti, B, Keridou, I, Puiggalí, J, Reiser, O, Díaz, DD, (2021). A pH-Triggered Polymer Degradation or Drug Delivery System by Light-Mediated Cis/Trans Isomerization of o-Hydroxy Cinnamates Macromolecular Rapid Communications 42, 2100213
A new methodology for the pH-triggered degradation of polymers or for the release of drugs under visible light irradiation based on the cyclization of ortho-hydroxy-cinnamates (oHC) to coumarins is described. The key oHC structural motif can be readily incorporated into the rational design of novel photocleavable polymers via click chemistry. This main-chain moiety undergoes a fast photocleavage when irradiated with 455 nm light provided that a suitable base is added. A series of polyethylene glycol-alt-ortho-hydroxy cinnamate (polyethylene glycol (PEG)(n)-alt-oHC)-based polymers are synthesized and the time-dependent visible-light initiated cleavage of the photoactive monomer and polymer is investigated in solution by a variety of spectroscopic and chromatographic techniques. The photo-degradation behavior of the water-soluble poly(PEG(2000)-alt-oHC) is investigated within a broad pH range (pH = 2.1-11.8), demonstrating fast degradation at pH 11.8, while the stability of the polymer is greatly enhanced at pH 2.1. Moreover, the neat polymer shows long-term stability under daylight conditions, thus allowing its storage without special precautions. In addition, two water-soluble PEG-based drug-carrier molecules (mPEG(2000)-oHC-benzhydrol/phenol) are synthesized and used for drug delivery studies, monitoring the process by UV-vis spectroscopy in an ON/OFF intermittent manner.
JTD Keywords: coumarins, drug delivery, e/z-double bond isomerization, o-hydroxy cinnamates, polymer degradation, Aliphatic compounds, Antioxidant activity, Antitumor, Chromatographic techniques, Chromatography, Cis/trans isomerization, Controlled drug delivery, Coumarin derivatives, Coumarins, Drug delivery, Drug delivery system, E/z-double bond isomerization, Films, Hydrogels, Image enhancement, Light, Long term stability, O-hydroxy cinnamates, Particles, Photoactive monomers, Photodegradation, Polyethylene glycols, Polyethylenes, Polymer degradation, Responsive polymers, Salts, Structural motifs, Synthesis (chemical), Targeted drug delivery, Visible light photocatalysis, Visible-light irradiation
Oliveira, LVF, Apostólico, N, Uriarte, JJ, da Palma, RK, Prates, RA, Deana, AM, Ferreira, LR, Afonso, JPR, Vieira, RD, de Oliveira, MC, Navajas, D, Farré, R, Lopes-Martins, RAB, (2021). Photodynamic Therapy in the Extracellular Matrix of Mouse Lungs: Preliminary Results of an Alternative Tissue Sterilization Process International Journal Of Photoenergy 2021, 5578387
Lung transplantation is one of the most difficult and delicate procedures among organ transplants. For the success of the procedure and survival of the new organ, the sterilization step for acellular lungs prior to recellularization is important to ensure that they are free of any risk of transmitting infections from the donor to the recipient subject. However, there are no available information concerning the lung mechanical parameters after sterilizing photodynamic therapy. The aim of this study was to evaluate the extracellular matrix (ECM) and lung mechanical parameters of decellularized lungs undergoing sterilizing photodynamic therapy (PDT). Besides, we also analyzed the lung after controlled infection with C. albicans in order to evaluate the effectiveness of PDT. The lung mechanical evaluation parameters, resistance (RL) and elastance (EL), exhibited no significant differences between groups. In addition, there were no PDT-induced changes in lung properties, with maintenance of the viscoelastic behavior of the lung scaffold after 1 h exposure to PDT. The ECM components remained virtually unchanged in the acellular lungs of both groups. We also showed that there was a reduction in fungal infection population after 45 minutes of PDT. However, more studies should be performed to establish and verify the effectiveness of PDT as a possible means for sterilizing lung scaffolds. This manuscript was presented as a master thesis of Nadua Apostólico at the postgraduate program in rehabilitation sciences, University Nove de Julho - UNINOVE.
JTD Keywords: candida, combination, inactivation, infections, mechanics, Gamma-irradiation
Garcia, J, Fernández-Pradas, JM, Lladó, A, Serra, P, Zalvidea, D, Kogan, MJ, Giralt, E, Sánchez-Navarro, M, (2021). The Combined Use of Gold Nanoparticles and Infrared Radiation Enables Cytosolic Protein Delivery Chemistry-A European Journal 27, 4670-4675
© 2020 Wiley-VCH GmbH Cytosolic protein delivery remains elusive. The inability of most proteins to cross the cellular membrane is a huge hurdle. Here we explore the unique photothermal properties of gold nanorods (AuNRs) to trigger cytosolic delivery of proteins. Both partners, protein and AuNRs, are modified with a protease-resistant cell-penetrating peptide with nuclear targeting properties to induce internalization. Once internalized, spatiotemporal control of protein release is achieved by near-infrared laser irradiation in the safe second biological window. Importantly, catalytic amounts of AuNRs are sufficient to trigger cytosolic protein delivery. To the best of our knowledge, this is the first time that AuNRs with their maximum of absorption in the second biological window are used to deliver proteins into the intracellular space. This strategy represents a powerful tool for the cytosolic delivery of virtually any class of protein.
JTD Keywords: cell-penetrating peptide, cytosolic delivery, gold nanorod, near-infrared irradiation, Cell line, tumor, Cell-penetrating peptide, Cytosolic delivery, Gold, Gold nanorod, Metal nanoparticles, Nanotubes, Near-infrared irradiation, Phototherapy
Silva, N., Riveros, A., Yutronic, N., Lang, E., Chornik, B., Guerrero, S., Samitier, J., Jara, P., Kogan, M. J., (2018). Photothermally controlled methotrexate release system using β-cyclodextrin and gold nanoparticles Nanomaterials 8, (12), 985
The inclusion compound (IC) of cyclodextrin (CD) containing the antitumor drug Methotrexate (MTX) as a guest molecule was obtained to increase the solubility of MTX and decrease its inherent toxic effects in nonspecific cells. The IC was conjugated with gold nanoparticles (AuNPs), obtained by a chemical method, creating a ternary intelligent delivery system for MTX molecules, based on the plasmonic properties of the AuNPs. Irradiation of the ternary system, with a laser wavelength tunable with the corresponding surface plasmon of AuNPs, causes local energy dissipation, producing the controlled release of the guest from CD cavities. Finally, cell viability was evaluated using MTS assays for β-CD/MTX and AuNPs + β-CD/MTX samples, with and without irradiation, against HeLa tumor cells. The irradiated sample of the ternary system AuNPs + β-CD/MTX produced a diminution in cell viability attributed to the photothermal release of MTX.
JTD Keywords: Cyclodextrin, Delivery system, Gold nanoparticles, Inclusion compound, Irradiation, Laser, Methotrexate, Photothermal release
Uriarte, J. J., Nonaka, P. N., Campillo, N., Palma, R. K., Melo, E., de Oliveira, L. V. F., Navajas, D., Farré, R., (2014). Mechanical properties of acellular mouse lungs after sterilization by gamma irradiation Journal of the Mechanical Behavior of Biomedical Materials , 40, 168-177
Lung bioengineering using decellularized organ scaffolds is a potential alternative for lung transplantation. Clinical application will require donor scaffold sterilization. As gamma-irradiation is a conventional method for sterilizing tissue preparations for clinical application, the aim of this study was to evaluate the effects of lung scaffold sterilization by gamma irradiation on the mechanical properties of the acellular lung when subjected to the artificial ventilation maneuvers typical within bioreactors. Twenty-six mouse lungs were decellularized by a sodium dodecyl sulfate detergent protocol. Eight lungs were used as controls and 18 of them were submitted to a 31kGy gamma irradiation sterilization process (9 kept frozen in dry ice and 9 at room temperature). Mechanical properties of acellular lungs were measured before and after irradiation. Lung resistance (RL) and elastance (EL) were computed by linear regression fitting of recorded signals during mechanical ventilation (tracheal pressure, flow and volume). Static (Est) and dynamic (Edyn) elastances were obtained by the end-inspiratory occlusion method. After irradiation lungs presented higher values of resistance and elastance than before irradiation: RL increased by 41.1% (room temperature irradiation) and 32.8% (frozen irradiation) and EL increased by 41.8% (room temperature irradiation) and 31.8% (frozen irradiation). Similar increases were induced by irradiation in Est and Edyn. Scanning electron microscopy showed slight structural changes after irradiation, particularly those kept frozen. Sterilization by gamma irradiation at a conventional dose to ensure sterilization modifies acellular lung mechanics, with potential implications for lung bioengineering.
JTD Keywords: Gamma irradiation, Lung bioengineering, Lung decellularization, Organ scaffold, Pulmonary mechanics, Decellularization, Gamma irradiation, Mouse lung, Pulmonary mechanics, dodecyl sulfate sodium, animal tissue, Article, artificial ventilation, bioengineering, bioreactor, compliance (physical), controlled study, freezing, gamma irradiation, lung, lung mechanics, lung resistance, male, mouse, nonhuman, room temperature, scanning electron microscopy, tissue scaffold, trachea pressure