by Keyword: Down regulation

Amil, AF, Ballester, BR, Maier, M, Verschure, PFMJ, (2022). Chronic use of cannabis might impair sensory error processing in the cerebellum through endocannabinoid dysregulation Addictive Behaviors 131, 107297

Chronic use of cannabis leads to both motor deficits and the downregulation of CB1 receptors (CB1R) in the cerebellum. In turn, cerebellar damage is often related to impairments in motor learning and control. Further, a recent motor learning task that measures cerebellar-dependent adaptation has been shown to distinguish well between healthy subjects and chronic cannabis users. Thus, the deteriorating effects of chronic cannabis use in motor performance point to cerebellar adaptation as a key process to explain such deficits. We review the literature relating chronic cannabis use, the endocannabinoid system in the cerebellum, and different forms of cerebellar-dependent motor learning, to suggest that CB1R downregulation leads to a generalized underestimation and misprocessing of the sensory errors driving synaptic updates in the cerebellar cortex. Further, we test our hypothesis with a computational model performing a motor adaptation task and reproduce the behavioral effect of decreased implicit adaptation that appears to be a sign of chronic cannabis use. Finally, we discuss the potential of our hypothesis to explain similar phenomena related to motor impairments following chronic alcohol dependency. © 2022

JTD Keywords: adaptation, addiction, alcohol-abuse, cerebellum, chronic cannabis use, cognition, deficits, endocannabinoid system, error processing, explicit, modulation, motor learning, release, synaptic plasticity, Adaptation, Adaptation, physiological, Alcoholism, Article, Behavioral science, Cannabinoid 1 receptor, Cannabis, Cannabis addiction, Cerebellum, Cerebellum cortex, Cerebellum disease, Chronic cannabis use, Computer model, Down regulation, Endocannabinoid, Endocannabinoid system, Endocannabinoids, Error processing, Hallucinogens, Human, Humans, Motor dysfunction, Motor learning, Nerve cell plasticity, Nonhuman, Physiology, Psychedelic agent, Purkinje-cells, Regulatory mechanism, Sensation, Sensory dysfunction, Sensory error processing impairment, Synaptic transmission, Task performance

dos Santos, FP, Verschure, PFMJ, (2022). Excitatory-Inhibitory Homeostasis and Diaschisis: Tying the Local and Global Scales in the Post-stroke Cortex Frontiers In Systems Neuroscience 15, 806544

Maintaining a balance between excitatory and inhibitory activity is an essential feature of neural networks of the neocortex. In the face of perturbations in the levels of excitation to cortical neurons, synapses adjust to maintain excitatory-inhibitory (EI) balance. In this review, we summarize research on this EI homeostasis in the neocortex, using stroke as our case study, and in particular the loss of excitation to distant cortical regions after focal lesions. Widespread changes following a localized lesion, a phenomenon known as diaschisis, are not only related to excitability, but also observed with respect to functional connectivity. Here, we highlight the main findings regarding the evolution of excitability and functional cortical networks during the process of post-stroke recovery, and how both are related to functional recovery. We show that cortical reorganization at a global scale can be explained from the perspective of EI homeostasis. Indeed, recovery of functional networks is paralleled by increases in excitability across the cortex. These adaptive changes likely result from plasticity mechanisms such as synaptic scaling and are linked to EI homeostasis, providing a possible target for future therapeutic strategies in the process of rehabilitation. In addition, we address the difficulty of simultaneously studying these multiscale processes by presenting recent advances in large-scale modeling of the human cortex in the contexts of stroke and EI homeostasis, suggesting computational modeling as a powerful tool to tie the meso- and macro-scale processes of recovery in stroke patients. Copyright © 2022 Páscoa dos Santos and Verschure.

JTD Keywords: balanced excitation, canonical microcircuit, cerebral-cortex, cortical excitability, cortical reorganization, diaschisis, excitability, excitatory-inhibitory balance, functional networks, homeostatic plasticity, ischemic-stroke, neuronal avalanches, photothrombotic lesions, state functional connectivity, whole-brain models, Algorithm, Biological marker, Brain, Brain cell, Brain cortex, Brain function, Brain radiography, Cerebrovascular accident, Cortical reorganization, Diaschisis, Down regulation, Excitability, Excitatory-inhibitory balance, Fluorine magnetic resonance imaging, Functional networks, Homeostasis, Homeostatic plasticity, Human, Motor dysfunction, Neuromodulation, Plasticity, Pyramidal nerve cell, Review, Simulation, Stroke, Stroke patient, Theta-burst stimulation, Visual cortex