DONATE

Publications

by Keyword: ECG

Romero, D, Calvo, M, Le Rolle, V, Behar, N, Mabo, P, Hernandez, A, (2022). Multivariate ensemble classification for the prediction of symptoms in patients with Brugada syndrome Medical & Biological Engineering & Computing 60, 81-94

Identification of asymptomatic patients at higher risk for suffering cardiac events remains controversial and challenging in Brugada syndrome (BS). In this work, we proposed an ECG-based classifier to predict BS-related symptoms, by merging the most predictive electrophysiological features derived from the ventricular depolarization and repolarization periods, along with autonomic-related markers. The initial feature space included local and dynamic ECG markers, assessed during a physical exercise test performed in 110 BS patients (25 symptomatic). Morphological, temporal and spatial properties quantifying the ECG dynamic response to exercise and recovery were considered. Our model was obtained by proposing a two-stage feature selection process that combined a resampled-based regularization approach with a wrapper model assessment for balancing, simplicity and performance. For the classification step, an ensemble was constructed by several logistic regression base classifiers, whose outputs were fused using a performance-based weighted average. The most relevant predictors corresponded to the repolarization interval, followed by two autonomic markers and two other makers of depolarization dynamics. Our classifier allowed for the identification of novel symptom-related markers from autonomic and dynamic ECG responses during exercise testing, suggesting the need for multifactorial risk stratification approaches in order to predict future cardiac events in asymptomatic BS patients.

JTD Keywords: brugada syndrome, depolarization disorders, ensemble classifier, heart-rate recovery, Acute myocardial-ischemia, Autonomics, Brugada syndrome, Brugadum syndrome, Cardiac death, Depolarization, Depolarization disorder, Depolarization disorders, Dynamic ecg, Electrocardiography, Electrophysiology, Ensemble classifier, Ensemble-classifier, Events, Exercise, Forecasting, Heart, Heart-rate, Heart-rate recovery, Prognosis, Qrs, Quantification, Recovery, Repolarization, Sudden cardiac death


Valls-Margarit, M., Iglesias-García, O., Di Guglielmo, C., Sarlabous, L., Tadevosyan, K., Paoli, R., Comelles, J., Blanco-Almazán, D., Jiménez-Delgado, S., Castillo-Fernández, O., Samitier, J., Jané, R., Martínez, Elena, Raya, Á., (2019). Engineered macroscale cardiac constructs elicit human myocardial tissue-like functionality Stem Cell Reports 13, (1), 207-220

In vitro surrogate models of human cardiac tissue hold great promise in disease modeling, cardiotoxicity testing, and future applications in regenerative medicine. However, the generation of engineered human cardiac constructs with tissue-like functionality is currently thwarted by difficulties in achieving efficient maturation at the cellular and/or tissular level. Here, we report on the design and implementation of a platform for the production of engineered cardiac macrotissues from human pluripotent stem cells (PSCs), which we term “CardioSlice.” PSC-derived cardiomyocytes, together with human fibroblasts, are seeded into large 3D porous scaffolds and cultured using a parallelized perfusion bioreactor with custom-made culture chambers. Continuous electrical stimulation for 2 weeks promotes cardiomyocyte alignment and synchronization, and the emergence of cardiac tissue-like properties. These include electrocardiogram-like signals that can be readily measured on the surface of CardioSlice constructs, and a response to proarrhythmic drugs that is predictive of their effect in human patients.

JTD Keywords: Cardiac tissue engineering, CardioSlice, ECG-like signals, Electrical stimulation, Heart physiology, Human induced pluripotent stem cells, Perfusion bioreactor, Tissue-like properties


Giraldo, B. F., Tellez, J. P., Herrera, S., Benito, S., (2013). Analysis of heart rate variability in elderly patients with chronic heart failure during periodic breathing CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 991-994

Assessment of the dynamic interactions between cardiovascular signals can provide valuable information that improves the understanding of cardiovascular control. Heart rate variability (HRV) analysis is known to provide information about the autonomic heart rate modulation mechanism. Using the HRV signal, we aimed to obtain parameters for classifying patients with and without chronic heart failure (CHF), and with periodic breathing (PB), non-periodic breathing (nPB), and Cheyne-Stokes respiration (CSR) patterns. An electrocardiogram (ECG) and a respiratory flow signal were recorded in 36 elderly patients: 18 patients with CHF and 18 patients without CHF. According to the clinical criteria, the patients were classified into the follow groups: 19 patients with nPB pattern, 7 with PB pattern, 4 with Cheyne-Stokes respiration (CSR), and 6 non-classified patients (problems with respiratory signal). From the HRV signal, parameters in the time and frequency domain were calculated. Frequency domain parameters were the most discriminant in comparisons of patients with and without CHF: PTot (p = 0.02), PLF (p = 0.022) and fpHF (p = 0.021). For the comparison of the nPB vs. CSR patients groups, the best parameters were RMSSD (p = 0.028) and SDSD (p = 0.028). Therefore, the parameters appear to be suitable for enhanced diagnosis of decompensated CHF patients and the possibility of developed periodic breathing and a CSR pattern.

JTD Keywords: cardiovascular system, diseases, electrocardiography, frequency-domain analysis, geriatrics, medical signal processing, patient diagnosis, pneumodynamics, signal classification, Cheyne-Stokes respiration patterns, ECG, autonomic heart rate modulation mechanism, cardiovascular control, cardiovascular signals, chronic heart failure, decompensated CHF patients, dynamic interaction assessment, elderly patients, electrocardiogram, enhanced diagnosis, frequency domain parameters, heart rate variability analysis, patient classification, periodic breathing, respiratory flow signal recording, Electrocardiography, Frequency modulation, Frequency-domain analysis, Heart rate variability, Senior citizens, Standards


Hernando, D., Alcaine, A., Pueyo, E., Laguna, P., Orini, M., Arcentales, A., Giraldo, B., Voss, A., Bayes-Genis, A., Bailon, R., (2013). Influence of respiration in the very low frequency modulation of QRS slopes and heart rate variability in cardiomyopathy patients CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 117-120

This work investigates the very low frequency (VLF) modulation of QRS slopes and heart rate variability (HRV). Electrocardiogram (ECG) and respiratory flow signal were acquired from patients with dilated cardiomyopathy and ischemic cardiomyopathy. HRV as well as the upward QRS slope (IUS) and downward QRS slope (IDS) were extracted from the ECG. The relation between HRV and QRS slopes in the VLF band was measured using ordinary coherence in 5-minute segments. Partial coherence was then used to remove the influence that respiration simultaneously exerts on HRV and QRS slopes. A statistical threshold was determined, below which coherence values were considered not to represent a linear relation. 7 out of 276 segments belonging to 5 out of 29 patients for IUS and 10 segments belonging to 5 patients for IDS presented a VLF modulation in QRS slopes, HRV and respiration. In these segments spectral coherence was statistically significant, while partial coherence decreased, indicating that the coupling HRV and QRS slopes was related to respiration. 4 segments had a partial coherence value below the threshold for IUS, 3 segments for IDS. The rest of the segments also presented a notable decrease in partial coherence, but still above the threshold, which means that other non-linearly effects may also affect this modulation.

JTD Keywords: diseases, electrocardiography, feature extraction, medical signal processing, pneumodynamics, statistical analysis, ECG, QRS slopes, cardiomyopathy patients, dilated cardiomyopathy, electrocardiogram, feature extraction, heart rate variability, ischemic cardiomyopathy, ordinary coherence, partial coherence value, respiration, respiratory flow signal acquisition, spectral coherence, statistical threshold, time 5 min, very low frequency modulation, Coherence, Educational institutions, Electrocardiography, Frequency modulation, Heart rate variability


Jané, R., Lazaro, J., Ruiz, P., Gil, E., Navajas, D., Farre, R., Laguna, P., (2013). Obstructive Sleep Apnea in a rat model: Effects of anesthesia on autonomic evaluation from heart rate variability measures CinC 2013 Computing in Cardiology Conference (CinC) , IEEE (Zaragoza, Spain) , 1011-1014

Rat model of Obstructive Sleep Apnea (OSA) is a realistic approach for studying physiological mechanisms involved in sleep. Rats are usually anesthetized and autonomic nervous system (ANS) could be blocked. This study aimed to assess the effect of anesthesia on ANS activity during OSA episodes. Seven male Sprague-Dawley rats were anesthetized intraperitoneally with urethane (1g/kg). The experiments were conducted applying airway obstructions, simulating 15s-apnea episodes for 15 minutes. Five signals were acquired: respiratory pressure and flow, SaO2, ECG and photoplethysmography (PPG). In total, 210 apnea episodes were studied. Normalized power spectrum of Pulse Rate Variability (PRV) was analyzed in the Low Frequency (LF) and High Frequency (HF) bands, for each episode in consecutive 15s intervals (before, during and after the apnea). All episodes showed changes in respiratory flow and SaO2 signal. Conversely, decreases in the amplitude fluctuations of PPG (DAP) were not observed. Normalized LF presented extremely low values during breathing (median=7,67%), suggesting inhibition of sympathetic system due to anesthetic effect. Subtle increases of LF were observed during apnea. HRV and PPG analysis during apnea could be an indirect tool to assess the effect and deep of anesthesia.

JTD Keywords: electrocardiography, fluctuations, medical disorders, medical signal detection, medical signal processing, neurophysiology, photoplethysmography, pneumodynamics, sleep, ECG, SaO2 flow, SaO2 signal, airway obstructions, amplitude fluctuations, anesthesia effects, anesthetized nervous system, autonomic evaluation, autonomic nervous system, breathing, heart rate variability, high-frequency bands, low-frequency bands, male Sprague-Dawley rats, normalized power spectrum, obstructive sleep apnea, photoplethysmography, physiological mechanisms, pulse rate variability, rat model, respiratory flow, respiratory pressure, signal acquisition, sympathetic system inhibition, time 15 min, time 15 s, Abstracts, Atmospheric modeling, Computational modeling, Electrocardiography, Rats, Resonant frequency


Correa, L. S., Laciar, E., Mut, V., Giraldo, B. F., Torres, A., (2010). Multi-parameter analysis of ECG and Respiratory Flow signals to identify success of patients on weaning trials Engineering in Medicine and Biology Society (EMBC) 32nd Annual International Conference of the IEEE , IEEE (Buenos Aires, Argentina) -----, 6070-6073

Statistical analysis, power spectral density, and Lempel Ziv complexity, are used in a multi-parameter approach to analyze four temporal series obtained from the Electrocardiographic and Respiratory Flow signals of 126 patients on weaning trials. In which, 88 patients belong to successful group (SG), and 38 patients belong to failure group (FG), i.e. failed to maintain spontaneous breathing during trial. It was found that mean values of cardiac inter-beat and breath durations give higher values for SG than for FG; Kurtosis coefficient of the spectrum of the rapid shallow breathing index is higher for FG; also Lempel Ziv complexity mean values associated with the respiratory flow signal are bigger for FG. Patients were then classified with a pattern recognition neural network, obtaining 80% of correct classifications (81.6% for FG and 79.5% for SG).

JTD Keywords: Electrocardiography, Medical signal processing, Neural nets, Pattern recognition, Pneumodynamics, Signal classification, Statistical analysis, ECG, Kurtosis coefficient, Lempel Ziv complexity, Breath durations, Cardiac interbeat durations, Electrocardiography, Multiparameter analysis, Pattern recognition neural network, Power spectral density, Respiratory flow signals, Signal classification, Spontaneous breathing, Statistical analysis, Weaning trials