by Keyword: Feeding
Arnau, Marc, Sans, Jordi, Gallego, Eva, Peraales, Jose Francisco, Turon, Pau, Aleman, Carlos, (2024). Polarized hydroxyapatite, a ceramic nanocatalyst to convert automotive carbon emissions into ethanol Journal Of Environmental Chemical Engineering 12, 112255
This paper is aimed to develop ultrananoporous polarized hydroxyapatite (HAp) catalyst and evaluate its per-formance in transforming CO2 into useable ethanol considering three different scenarios: 1) a batch reaction using a mixture of CO2 and CH4 as feeding gas; 2) a batch reaction using as reactant exhaust gases captured from the fumes of diesel vehicles; and 3) a continuous flow reaction using pure CO2 as feeding gas. Ultrananoporous HAp scaffolds were prepared using a four-step process: 1) as prepared HAp powder was mixed with 60% wt. of a commercial hydrogel at low-temperature; 2) the resulting paste was shaped at low temperature to reduce the adhesion between the metallic tools and the mixture, enhancing the homogeneity of the sample; 3) the shaped paste was calcined in air by applying 1000 oC during 2 h to eliminate the hydrogel; and 4) an external DC electric field of 3 kV/cm was imposed at 1000 oC during 1 h to the calcined scaffold. The resulting polarized scaffolds both ultrananoporosity and catalytic activation. Thus, the mass: volume ratio of the ultrananoporous catalyst was much lower than that of conventional HAp catalyst (718 vs 5093 g/L. Furthermore, the ethanol yield was much higher (up to a factor of x21.4) for the ultrananoporous catalyst than for the compact one, allowing us to conclude that ultrananoporous polarized HAp catalyst is a promising technology for transforming CO2 into valuable chemical products from highly polluted gases, especially those coming from road, sea and air transport.
JTD Keywords: A: ceramics, Air pollution, Automotives, Batch reactions, Calcination, Carbon, Carbon dioxide, Co2 fixation, Co2 reduction, Desig, Electric fields, Environmental process, Ethanol, Exhaust gases, Feeding gas, Fumes, Hydrogels, Hydroxyapatite, Lows-temperatures, Nano-catalyst, Nanocatalysts, Polarized catalys, Polarized catalyst, Scaffolds, Temperature, ]+ catalyst
Farré, R, Rodríguez-Lázaro, MA, Otero, J, Gavara, N, Sunyer, R, Farré, N, Gozal, D, Almendros, I, (2024). Low-cost, open-source device for simultaneously subjecting rodents to different circadian cycles of light, food, and temperature Frontiers In Physiology 15, 1356787
Exposure of experimental rodents to controlled cycles of light, food, and temperature is important when investigating alterations in circadian cycles that profoundly influence health and disease. However, applying such stimuli simultaneously is difficult in practice. We aimed to design, build, test, and open-source describe a simple device that subjects a conventional mouse cage to independent cycles of physiologically relevant environmental variables. The device is based on a box enclosing the rodent cage to modify the light, feeding, and temperature environments. The device provides temperature-controlled air conditioning (heating or cooling) by a Peltier module and includes programmable feeding and illumination. All functions are set by a user-friendly front panel for independent cycle programming. Bench testing with a model simulating the CO2 production of mice in the cage showed: a) suitable air renewal (by measuring actual ambient CO2), b) controlled realistic illumination at the mouse enclosure (measured by a photometer), c) stable temperature control, and d) correct cycling of light, feeding, and temperature. The cost of all the supplies (retail purchased by e-commerce) was <300 US$. Detailed technical information is open-source provided, allowing for any user to reliably reproduce or modify the device. This approach can considerably facilitate circadian research since using one of the described low-cost devices for any mouse group with a given light-food-temperature paradigm allows for all the experiments to be performed simultaneously, thereby requiring no changes in the light/temperature of a general-use laboratory. 1 Introduction
JTD Keywords: Animal experiment, Animal model, Animal research, Article, Circadian alteration, Circadian rhythm, Commercial phenomena, Controlled study, Cycling, Energy consumption, Energy-expenditure, Experimental model, Feeding, Food, Food availability, Illumination, Intermittent fasting, Light, Light cycle, Light dark cycle, Mouse, Nonhuman, Open source technology, Open-source hardware, Performance, Photography, Research, Rhythms, Rodent, Temperature, Temperature cycle
Bartova, S, Madrid-Gambin, F, Fernandez, L, Carayol, J, Meugnier, E, Segrestin, B, Delage, P, Vionnet, N, Boizot, A, Laville, M, Vidal, H, Marco, S, Hager, J, Moco, S, (2022). Grape polyphenols decrease circulating branched chain amino acids in overfed adults Front Nutr 9, 998044
Introduction and aimsDietary polyphenols have long been associated with health benefits, including the prevention of obesity and related chronic diseases. Overfeeding was shown to rapidly induce weight gain and fat mass, associated with mild insulin resistance in humans, and thus represents a suitable model of the metabolic complications resulting from obesity. We studied the effects of a polyphenol-rich grape extract supplementation on the plasma metabolome during an overfeeding intervention in adults, in two randomized parallel controlled clinical trials.MethodsBlood plasma samples from 40 normal weight to overweight male adults, submitted to a 31-day overfeeding (additional 50% of energy requirement by a high calorie-high fructose diet), given either 2 g/day grape polyphenol extract or a placebo at 0, 15, 21, and 31 days were analyzed (Lyon study). Samples from a similarly designed trial on females (20 subjects) were collected in parallel (Lausanne study). Nuclear magnetic resonance (NMR)-based metabolomics was conducted to characterize metabolome changes induced by overfeeding and associated effects from polyphenol supplementation. The clinical trials are registered under the numbers NCT02145780 and NCT02225457 atResultsChanges in plasma levels of many metabolic markers, including branched chain amino acids (BCAA), ketone bodies and glucose in both placebo as well as upon polyphenol intervention were identified in the Lyon study. Polyphenol supplementation counterbalanced levels of BCAA found to be induced by overfeeding. These results were further corroborated in the Lausanne female study.ConclusionAdministration of grape polyphenol-rich extract over 1 month period was associated with a protective metabolic effect against overfeeding in adults.
JTD Keywords: branched chain amino acids, grape polyphenols, human trials, metabolism, metabolomics, nmr, obesity, Branched chain amino acids, Grape polyphenols, Human trials, Metabolism, Metabolomics, Nmr, Obesity, Overfeeding