DONATE

Publications

by Keyword: Carbon

Chen S, Peetroons X, Bakenecker AC, Lezcano F, Aranson IS, Sánchez S, (2024). Collective buoyancy-driven dynamics in swarming enzymatic nanomotors. Nature Communications 15, 9315

Enzymatic nanomotors harvest kinetic energy through the catalysis of chemical fuels. When a drop containing nanomotors is placed in a fuel-rich environment, they assemble into ordered groups and exhibit intriguing collective behaviour akin to the bioconvection of aerobic microorganismal suspensions. This collective behaviour presents numerous advantages compared to individual nanomotors, including expanded coverage and prolonged propulsion duration. However, the physical mechanisms underlying the collective motion have yet to be fully elucidated. Our study investigates the formation of enzymatic swarms using experimental analysis and computational modelling. We show that the directional movement of enzymatic nanomotor swarms is due to their solutal buoyancy. We investigate various factors that impact the movement of nanomotor swarms, such as particle concentration, fuel concentration, fuel viscosity, and vertical confinement. We examine the effects of these factors on swarm self-organization to gain a deeper understanding. In addition, the urease catalysis reaction produces ammonia and carbon dioxide, accelerating the directional movement of active swarms in urea compared with passive ones in the same conditions. The numerical analysis agrees with the experimental findings. Our findings are crucial for the potential biomedical applications of enzymatic nanomotor swarms, ranging from enhanced diffusion in bio-fluids and targeted delivery to cancer therapy.

JTD Keywords: Ammonia, Carbon dioxide, Catalysis, Computer simulation, Kinetics, Motion, Nanostructures, Urease, Viscosity


Arnau, Marc, Sans, Jordi, Gallego, Eva, Peraales, Jose Francisco, Turon, Pau, Aleman, Carlos, (2024). Polarized hydroxyapatite, a ceramic nanocatalyst to convert automotive carbon emissions into ethanol Journal Of Environmental Chemical Engineering 12, 112255

This paper is aimed to develop ultrananoporous polarized hydroxyapatite (HAp) catalyst and evaluate its per-formance in transforming CO2 into useable ethanol considering three different scenarios: 1) a batch reaction using a mixture of CO2 and CH4 as feeding gas; 2) a batch reaction using as reactant exhaust gases captured from the fumes of diesel vehicles; and 3) a continuous flow reaction using pure CO2 as feeding gas. Ultrananoporous HAp scaffolds were prepared using a four-step process: 1) as prepared HAp powder was mixed with 60% wt. of a commercial hydrogel at low-temperature; 2) the resulting paste was shaped at low temperature to reduce the adhesion between the metallic tools and the mixture, enhancing the homogeneity of the sample; 3) the shaped paste was calcined in air by applying 1000 oC during 2 h to eliminate the hydrogel; and 4) an external DC electric field of 3 kV/cm was imposed at 1000 oC during 1 h to the calcined scaffold. The resulting polarized scaffolds both ultrananoporosity and catalytic activation. Thus, the mass: volume ratio of the ultrananoporous catalyst was much lower than that of conventional HAp catalyst (718 vs 5093 g/L. Furthermore, the ethanol yield was much higher (up to a factor of x21.4) for the ultrananoporous catalyst than for the compact one, allowing us to conclude that ultrananoporous polarized HAp catalyst is a promising technology for transforming CO2 into valuable chemical products from highly polluted gases, especially those coming from road, sea and air transport.

JTD Keywords: A: ceramics, Air pollution, Automotives, Batch reactions, Calcination, Carbon, Carbon dioxide, Co2 fixation, Co2 reduction, Desig, Electric fields, Environmental process, Ethanol, Exhaust gases, Feeding gas, Fumes, Hydrogels, Hydroxyapatite, Lows-temperatures, Nano-catalyst, Nanocatalysts, Polarized catalys, Polarized catalyst, Scaffolds, Temperature, ]+ catalyst


Fontana-Escartín, A, Lanzalaco, S, Zhilev, G, Armelin, E, Bertran, O, Alemán, C, (2024). Oxygen plasma treated thermoplastics as integrated electroresponsive sensors Materials Today Communications 38, 107653

Polypropylene (PP), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol (PETG) and polylactic acid (PLA) 3D printed specimens, which are intrinsically non-electroresponsive materials, have been converted into electroresponsive electrodes applying a low-pressure oxygen plasma treatment. After complete chemical, morphological and electrochemical characterization, plasma treated samples have been applied as integrated electrochemical sensors for detecting dopamine and serotonin by cyclic voltammetry and chronoamperometry. Results show differences in the sensing behavior, which have been explained on the basis of the chemical structure of the pristine materials. While plasma treated PLA exhibits the highest performance as electrochemical sensor in terms of sensitivity (lowest limits of detection and quantification) and selectivity (against uric acid and ascorbic acid as interfering substances), plasma treated PP displays the poorest behavior due to its low polarity compared to PLA 3D-printed electrodes. Instead, plasma treated TPU and PETG shows a very good response, much closer to PLA, as sensitive electrodes towards neurotransmitter molecules (dopamine and serotonin). Overall, results open a new door for the fabrication of electrochemical conductive sensors using intrinsically insulating materials, without the need of chemical functionalization processes.

JTD Keywords: 3d printing, Amines, Ascorbic acid, Chemical characterization, Cyclic voltammetry, Dopamine, Electrochemical characterizations, Electrochemical sensor s, Electrochemical sensors, Electrode materials, Electroresponsive materials, Low-pressure oxygen-plasma treatments, Morphological characterization, Multiwalled carbon nanotubes (mwcn), Neurophysiology, Oxygen, Oxygen plasmas, Plastic bottles, Polyethylene terephthalate glycol, Polyethylene terephthalate glycols, Polyethylene terephthalates, Polylact i c acid, Polylactic acid, Polylactic acid pla, Polyols, Polypropylene, Polypropylene oxides, Polypropylenes, Polyurethanes, Reinforced plastics, Supercapacitors, Thermoplast i c polyurethane, Thermoplastic polyurethane, Thermoplastic polyurethanes


Sans, Jordi, Arnau, Marc, Bosque, Ricard, Turon, Pau, Aleman, Carlos, (2024). Synthesis of urea from CO2 and N2 fixation under mild conditions using polarized hydroxyapatite as a catalyst Sustainable Energy & Fuels 8, 1473-1482

Polarized hydroxyapatite (p-HAp) has been used as a catalyst for the synthesis of urea coupling N-2, CO2 and water under mild reaction conditions when compared to classical nitrogen fixation reactions, such as the Haber-Bosch process. The reaction of 3 bar of N-2 and 3 bar of CO2 under UV illumination at 120 degrees C (for 48 h) results in a urea yield of 1.5 +/- 0.1 mmol per gram of catalyst (g(c)) with a selectivity close to 80%, whereas the reaction is not successful without UV irradiation. However, the addition of small amounts of NO (314 ppm) produces 15.2 +/- 0.6 and 4.6 +/- 0.4 mmol g(c)(-1) with and without UV illumination, respectively, with the selectivity in both cases being close to 100%. As nitrogen fixation without UV irradiation using p-HAp as a catalyst is a challenge, studies with NO have been conducted varying the reaction conditions (time, pressure and temperature). The results suggest a mechanism based on the production of NH4+ through the oxidation of N-2.

JTD Keywords: Carbon dioxide, Carbon,dinitrogen,reduction,nitrogen,ammonia,dioxid, Catalyst selectivity, Condition, Haber-bosch process, Hydroxyapatite, Irradiation, Metabolism, Mild reaction conditions, Nitrogen fixation, Pressure and temperature, Reaction conditions, Time pressures, Time-temperature, Urea, Uv illuminations, Without uv irradiations, ]+ catalyst


Gholami, S, Rezvani, A, Vatanpour, V, Khoshravesh, SH, Llorens, J, Engel, E, Castano, O, Cortina, JL, (2023). Chlorine resistance property improvement of polyamide reverse osmosis membranes through cross-linking degree increment Science Of The Total Environment 889, 164283

Highly permeable polyamide reverse osmosis (RO) membranes are desirable for reducing the energy burden and ensuring future water resources in arid and semiarid regions. One notable drawback of thin film composite (TFC) polyamide RO/NF membranes is the polyamide's sensitivity to degradation by free chlorine, the most used biocide in water purification trains. This investigation demonstrated a significant increase in the crosslinking-degree parameter by the m-phenylenediamine (MPD) chemical structure extending in the thin film nanocomposite (TFN) membrane without adding extra MPD monomers to enhance the chlorine resistance and performance. Membrane modification was carried out according to monomer ratio changes and Nanoparticle embedding into the PA layer approaches. A new class of TFN-RO membranes incorporating novel aromatic amine functionalized (AAF)-MWCNTs embedded into the polyamide (PA) layer was introduced. A purposeful strategy was carried out to use cyanuric chloride (2,4,6-trichloro-1,3,5-triazine) as an intermediate functional group in the AAF-MWCNTs. Thus, amidic nitrogen, connected to benzene rings and carbonyl groups, assembles a structure similar to the standard PA, consisting of MPD and trimesoyl chloride. The resulting AAF-MWCNTs were mixed in the aqueous phase during the interfacial polymerization to increase the susceptible positions to chlorine attack and improve the crosslinking degree in the PA network. The characterization and performance results of the membrane demonstrated an increase in ion selectivity and water flux, impressive stability of salt rejection after chlorine exposure, and improved antifouling performance. This purposeful modification resulted in overthrowing two tradeoffs; i) high crosslink density-water flux and ii) salt rejection-permeability. The modified membrane demonstrated ameliorative chlorine resistance relative to the pristine one, with twice the increase in crosslinking degree, more than four times the enhancement of the oxidation resistance, negligible reduction in the salt rejection (0.83 %), and only 5 L/m2.h flux loss following a rigorous static chlorine exposure of 500 ppm.h under acidic conditions. The excellent performance of new chlorine resistant TNF RO membranes fabricated via AAF-MWCNTs together with the facile membrane manufacturing process offered the possibility of postulating them in the desalination field, which could eventually help the current freshwater supply challenge.Copyright © 2023 Elsevier B.V. All rights reserved.

JTD Keywords: behavior, carbon nanotubes, desalination, interfacial polymerization, naclo resistance, nanocomposite, nanofiltration membrane, performance, polymerization, ro membranemodification, substrate, water, Antifouling, Desalination, Interfacial polymerization, Naclo resistance, Ro membrane modification, Thin-film composite


Garcia-Torres, J, Colombi, S, Mahamed, I, Sylla, D, Arnau, M, Sans, J, Ginebra, MP, Aleman, C, (2023). Nanocomposite Hydrogels with Temperature Response for Capacitive Energy Storage Acs Applied Energy Materials 6, 4487-4495

Lanzalaco, S, Mingot, J, Torras, J, Alemán, C, Armelin, E, (2023). Recent Advances in Poly(N-isopropylacrylamide) Hydrogels and Derivatives as Promising Materials for Biomedical and Engineering Emerging Applications Advanced Engineering Materials 25,

Fontana-Escartin, A, Lanzalaco, S, Bertran, O, Aleman, C, (2022). Electrochemical multi-sensors obtained by applying an electric discharge treatment to 3D-printed poly(lactic acid) Applied Surface Science 597, 153623

Electrochemical sensors for real-time detection of several bioanalytes have been prepared by additive manufacturing, shaping non-conductive poly(lactic acid) (PLA) filaments, and applying a physical treatment to create excited species. The latter process, which consists of the application of power discharge of 100 W during 2 min in a chamber at a low pressure of O-2, converts electrochemically inert PLA into an electrochemically responsive material. The electric discharge caused the oxidation of the PLA surface as evidenced by the increment in the quantity of oxygenated species detected by FTIR spectroscopy and X-ray photoelectron spectroscopy (XPS). Indeed, changes in the surface chemical composition became more pronounced with increasing O-2 pressure. After demonstrating the performance of the chemically modified material as individual dopamine and glucose sensors, multiplexed detection has been achieved by measuring simultaneously the two voltammetric signals. This has been performed by collecting the signals in two different regions, a naked chemically modified PLA for dopamine detection and a chemically modified PLA region functionalized with Glucose Oxidase. These outcomes led to define a new paradigm for manufacturing electrodes for electrochemical sensors based on 3D printing without using conducting materials at any stage of the process.

JTD Keywords: Additive manu f a c turing, Carbon, Conductivity, Degradation, Dopamine, Dopamine detection, Glucose detection, Glucose sensors, Immobilization, Multiplexed detect i o n, Oxidase, Plasma treatment


Sans, J, Arnau, M, Roa, JJ, Turon, P, Alernan, C, (2022). Tailorable Nanoporous Hydroxyapatite Scaffolds for Electrothermal Catalysis Acs Applied Nano Materials 5, 8526-8536

Polarized hydroxyapatite (HAp) scaffolds with customized architecture at the nanoscale have been presented as a green alternative to conventional catalysts used for carbon and dinitrogen fixation. HAp printable inks with controlled nanoporosity and rheological properties have been successfully achieved by incorporating Pluronic hydrogel. Nanoporous scaffolds with good mechanical properties, as demonstrated by means of the nanoindentation technique, have been obtained by a sintering treatment and the posterior thermally induced polarization process. Their catalytic activity has been evaluated by considering three different key reactions (all in the presence of liquid water): (1) the synthesis of amino acids from gas mixtures of N-2, CO2, and CH4; (2) the production of ethanol from gas mixtures of CO2 and CH4; and (3) the synthesis of ammonia from N-2 gas. Comparison of the yields obtained by using nanoporous and nonporous (conventional) polarized HAp catalysts shows that both the nanoporosity and water absorption capacity of the former represent a drawback when the catalytic reaction requires auxiliary coating layers, as for example for the production of amino acids. This is because the surface nanopores achieved by incorporating Pluronic hydrogel are completely hindered by such auxiliary coating layers. On the contrary, the catalytic activity improves drastically for reactions in which the HAp-based scaffolds with enhanced nanoporosity are used as catalysts. More specifically, the carbon fixation from CO2 and CH4 to yield ethanol improves by more than 3000% when compared with nonporous HAp catalyst. Similarly, the synthesis of ammonia by dinitrogen fixation increases by more than 2000%. Therefore, HAp catalysts based on nanoporous scaffolds exhibit an extraordinary potential for scalability and industrial utilization for many chemical reactions, enabling a feasible green chemistry alternative to catalysts based on heavy metals.

JTD Keywords: Amino acids, Amino-acids, Ammonium production, Bone, Carbon fixation, Composites, Constitutive phases, Decarbonization, Dinitrogen, Ditrogen fixation, Elastic-modulus, Electrophotosynthesis, Ethanol production, Hardness, Indentation, Nanoindentation, Pluronic hydrogel, Polarized hydroxyapatite


Moreira, Vitor B, Aleman, Carlos, Rintjema, Jeroen, Bravo, Fernando, Kleij, Arjan W, Armelin, Elaine, (2022). A Biosourced Epoxy Resin for Adhesive Thermoset Applications Chemsuschem 15, e202102624--

Biobased epoxy-derived raw materials will be essential for future coating and adhesive designs in industry. Here, a facile approach is reported towards the incorporation of limonene into an epoxy-functionalized polycarbonate and its crosslinking with a polyamine curing agent to obtain a thermoset material. For the first time, a solvent-borne adhesive with excellent film-forming, mechanical and adhesion strength properties is described.

JTD Keywords: adhesives, biobased epoxies, limonene, polycarbonate, Adhesives, Biobased epoxies, Biobased epoxy, Carbon-dioxide, Curing agents, Design in industries, Epoxides, Epoxy, Epoxy resins, Film adhesion, Film-forming, Functionalized, Limonene, Mechanical, Monomer, Monoterpenes, Oil, Oxide, Performance, Polyamines, Polycarbonate, Polycarbonates, Terpenes, Thermoset materials, Thermosets


Sans, J, Arnau, M, Sanz, V, Turon, P, Alemán, C, (2022). Hydroxyapatite-based biphasic catalysts with plasticity properties and its potential in carbon dioxide fixation Chemical Engineering Journal 433, 133512

The design of catalysts with controlled selectivity at will, also known as catalytic plasticity, is a very attractive approach for the recycling of carbon dioxide (CO2). In this work, we study how catalytically active hydroxyapatite (HAp) and brushite (Bru) interact synergistically, allowing the production of formic acid or acetic acid depending on the HAp/Bru ratio in the catalyst. Raman, wide angle X-ray scattering, X-ray photoelectron spectroscopy, scanning electron microscopy and electrochemical impedance spectroscopy studies, combined with an exhaustive revision of the crystalline structure of the catalyst at the atomic level, allowed to discern how the Bru phase can be generated and stabilized at high temperatures. Results clearly indicate that the presence of OH– groups to maintain the crystalline structural integrity in conjunction with Ca2+ ions less bonded to the lattice fixate carbon into C1, C2 and C3 molecules from CO2 and allow the evolution from formic to acetic acid and acetone. In this way, the plasticity of the HAp-Bru system is demonstrated, representing a promising green alternative to the conventional metal-based electrocatalysts used for CO2 fixation. Thus, the fact that no electric voltage is necessary for the CO2 reduction has a very favorable impact in the final energetic net balance of the carbon fixation reaction. © 2021

JTD Keywords:

ethanol production & nbsp, brushite, co2 reduction, conversion, electrocatalytic reduction, electrode, formate, heterogeneous catalysis & nbsp, hydrogen evolution, insights, monetite, polarized hydroxyapatite,

, Acetic acid, Acetone, Biphasic catalyst, Brushite, Calcium phosphate, Carbon dioxide, Carbon dioxide fixation, Catalysis, Catalyst selectivity, Co 2 reduction, Co2 reduction, Electrocatalysts, Electrochemical impedance spectroscopy, Electrochemical reduction, Electrochemical-impedance spectroscopies, Ethanol production, Formic acid, Heterogeneous catalysis, Hydroxyapatite, Ph, Polarized hydroxyapatite, Property, Reduction, Scanning electron microscopy, Temperature programmed desorption, Wide angle x-ray scattering, X ray photoelectron spectroscopy, X ray scattering, ]+ catalyst


Moreira, Vitor Bonamigo, Rintjema, Jeroen, Bravo, Fernando, Kleij, Arjan W, Franco, Lourdes, Puiggali, Jordi, Aleman, Carlos, Armelin, Elaine, (2022). Novel Biobased Epoxy Thermosets and Coatings from Poly(limonene carbonate) Oxide and Synthetic Hardeners Acs Sustainable Chemistry & Engineering 10, 2708-2719

In the area of coating development, it is extremely difficult to find a substitute for bisphenol A diglycidyl ether (DGEBA), the classical petroleum-based raw material used for the formulation of epoxy thermosets. This epoxy resin offers fast curing reaction with several hardeners and the best thermal and chemical resistance properties for applications in coatings and adhesive technologies. In this work, a new biobased epoxy, derived from poly(limonene carbonate) oxide (PLCO), was combined with polyetheramine and polyamineamide curing agents, offering a spectrum of thermal and mechanical properties, superior to DGEBA-based thermosets. The best formulation was found to be a combination of PLCO and a commercial curing agent (Jeffamine) in a stoichiometric 1:1 ratio. Although PLCO is a solid due to its high molecular weight, it was possible to create a two-component partially biobased epoxy paint without the need of volatile organic compounds (i.e., solvent-free formulation), intended for use in coating technology to partially replace DGEBA-based thermosets.

JTD Keywords: acid, adhesion, epoxy thermoset, mechanical properties, monomer, polycarbonates, polymers, protection, resins, solvent-free paint, thermal properties, Adhesives, Biobased epoxy, Bisphenol-a-diglycidyl ethers, Carbonation, Coating development, Coating technologies, Curing, Curing agents, Epoxy coatings, Epoxy resins, Epoxy thermoset, Epoxy thermosets, Limonene oxide, Mechanical properties, Monoterpenes, Paint, Poly(limonene carbonate) oxide, Solvent free, Solvent-free paint, Thermal properties, Thermosets, Volatile organic compounds


Freire, R, Mego, M, Oliveira, LF, Mas, S, Azpiroz, F, Marco, S, Pardo, A, (2022). Quantitative GC–TCD Measurements of Major Flatus Components: A Preliminary Analysis of the Diet Effect Sensors 22, 838

The impact of diet and digestive disorders in flatus composition remains largely unexplored. This is partially due to the lack of standardized sampling collection methods, and the easy atmospheric contamination. This paper describes a method to quantitatively determine the major gases in flatus and their application in a nutritional intervention. We describe how to direct sample flatus into Tedlar bags, and simultaneous analysis by gas chromatography–thermal conductivity detection (GC–TCD). Results are analyzed by univariate hypothesis testing and by multilevel principal component analysis. The reported methodology allows simultaneous determination of the five major gases with root mean measurement errors of 0.8% for oxygen (O2), 0.9% for nitrogen (N2), 0.14% for carbon dioxide (CO2), 0.11% for methane (CH4), and 0.26% for hydrogen (H2). The atmospheric contamination was limited to 0.86 (95% CI: [0.7–1.0])% for oxygen and 3.4 (95% CI: [1.4–5.3])% for nitrogen. As an illustration, the method has been successfully applied to measure the response to a nutritional intervention in a reduced crossover study in healthy subjects. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.

JTD Keywords: breath, colonic microbiota, diet effect on flatus, disorders, evacuation, excretion, flatulence, hydrogen gas, major flatus gas components, multilevel principal component analysis, rectal gas collection, systems, volume, Atmospheric contamination, Carbon dioxide, Conductivity detection, Diet effect on flatus, Gas chromatography, Gas collections, Gas component, Gases, Major flatus gas component, Major flatus gas components, Multilevel principal component analyse, Multilevel principal component analysis, Multilevels, Nitrogen, Nutrition, Oxygen, Principal component analysis, Principal-component analysis, Rectal gas collection, Volatile organic-compounds


Sans, J, Sanz, V, Turon, P, Aleman, C, (2021). Enhanced CO2 Conversion into Ethanol by Permanently Polarized Hydroxyapatite through C-C Coupling Chemcatchem 13, 5025-5033

Lopez-Muñoz, GA, Fernández-Costa, JM, Ortega, MA, Balaguer-Trias, J, Martin-Lasierra, E, Ramón-Azcón, J, (2021). Plasmonic nanocrystals on polycarbonate substrates for direct and label-free biodetection of Interleukin-6 in bioengineered 3D skeletal muscles Nanophotonics 10, 4477-4488

Abstract The development of nanostructured plasmonic biosensors has been widely widespread in the last years, motivated by the potential benefits they can offer in integration, miniaturization, multiplexing opportunities, and enhanced performance label-free biodetection in a wide field of applications. Between them, engineering tissues represent a novel, challenging, and prolific application field for nanostructured plasmonic biosensors considering the previously described benefits and the low levels of secreted biomarkers (?pM–nM) to detect. Here, we present an integrated plasmonic nanocrystals-based biosensor using high throughput nanostructured polycarbonate substrates. Metallic film thickness and incident angle of light for reflectance measurements were optimized to enhance the detection of antibody–antigen biorecognition events using numerical simulations. We achieved an enhancement in biodetection up to 3× as the incident angle of light decreases, which can be related to shorter evanescent decay lengths. We achieved a high reproducibility between channels with a coefficient of variation below 2% in bulk refractive index measurements, demonstrating a high potential for multiplexed sensing. Finally, biosensing potential was demonstrated by the direct and label-free detection of interleukin-6 biomarker in undiluted cell culture media supernatants from bioengineered 3D skeletal muscle tissues stimulated with different concentrations of endotoxins achieving a limit of detection (LOD) of ? 0.03 ng/mL (1.4 pM).

JTD Keywords: assay, crystals, drug, label-free biosensing, molecules, plasmonic nanostructures, sensors, skeletal muscle, tissue engineering, Biodetection, Biomarkers, Biosensors, Cell culture, Cells, Chemical detection, Histology, Interleukin-6, Interleukin6 (il6), Label free, Label-free biosensing, Muscle, Nano-structured, Nanocrystals, Plasmonic nanocrystals, Plasmonic nanostructures, Plasmonics, Polycarbonate substrates, Polycarbonates, Refractive index, Sensitivity, Skeletal muscle, Tissue engineering, Tissues engineerings


Sans, J, Sanz, V, del Valle, LJ, Puiggali, J, Turon, P, Aleman, C, (2021). Optimization of permanently polarized hydroxyapatite catalyst. Implications for the electrophotosynthesis of amino acids by nitrogen and carbon fixation Journal Of Catalysis 397, 98-107

The enhanced catalytic activity of permanently polarized hydroxyapatite, which is achieved using a thermally stimulated polarization process, largely depends on both the experimental conditions used to prepare crystalline hydroxyapatite from its calcium and phosphate precursors and the polarization process parameters. A mineral similar to brushite, which is an apatitic phase that can evolve to hydroxyapatite, is found at the surface of highly crystalline hydroxyapatite. It appears after chemical precipitation and hydrothermal treatment performed at 150 degrees C for 24 h followed by a sinterization at 1000 degrees C and a polarization treatment by applying a voltage of 500 Vat high temperature. Both the high crystallinity and the presence of brushite-like phase on the electrophotocatalyst affect the nitrogen and carbon fixation under mild reaction conditions (95 degrees C and 6 bar) and the synthesis of glycine and alanine from a simple gas mixture containing N-2, CO2, CH4 and H2O. Thus, the Gly/Ala ratio can be customized by controlling the presence of brushite on the surface of the catalyst, enabling to develop new strategies to regulate the production of amino acids by nitrogen and carbon fixation. (C) 2021 Elsevier Inc. All rights reserved.

JTD Keywords: Amino acids, Brushite, Carbon, Carbon dioxide fixation, Catalyst activity, Catalytic apatites, Chemical precipitation, Crystalline hydroxyapatite, Crystallinity, Decomposition, Enhanced catalytic activity, Experimental conditions, Heterogeneous catalysis, High crystallinity, Hydrothermal synthesis, Hydrothermal treatments, Hydroxyapatite, Lactic-acid, Mild reaction conditions, Molecular nitrogen fixation, Nitrogen, Nitrogen fixation, Phosphate, Polarization, Precipitation (chemical), Process parameters, Thermally stimulated polarization


Vilela, D, Blanco-Cabra, N, Eguskiza, A, Hortelao, AC, Torrents, E, Sanchez, S, (2021). Drug-Free Enzyme-Based Bactericidal Nanomotors against Pathogenic Bacteria Acs Applied Materials & Interfaces 13, 14964-14973

The low efficacy of current conventional treatments for bacterial infections increases mortality rates worldwide. To alleviate this global health problem, we propose drug-free enzyme-based nanomotors for the treatment of bacterial urinary-tract infections. We develop nanomotors consisting of mesoporous silica nanoparticles (MSNPs) that were functionalized with either urease (U-MSNPs), lysozyme (L-MSNPs), or urease and lysozyme (M-MSNPs), and use them against nonpathogenic planktonic Escherichia coli. U-MSNPs exhibited the highest bactericidal activity due to biocatalysis of urea into NaHCO3 and NH3, which also propels U-MSNPs. In addition, U-MSNPs in concentrations above 200 μg/mL were capable of successfully reducing 60% of the biofilm biomass of a uropathogenic E. coli strain. This study thus provides a proof-of-concept, demonstrating that enzyme-based nanomotors are capable of fighting infectious diseases. This approach could potentially be extended to other kinds of diseases by selecting appropriate biomolecules.

JTD Keywords: biofilms, carbonate, e. coli, enzymatic nanomotors, infections, lysozyme, micromotors, nanomachines, proteins, self-propulsion, Anti-bacterial agents, Biocatalysis, Biofilms, Canavalia, Drug carriers, E. coli, Eliminate escherichia-coli, Enzymatic nanomotors, Escherichia coli, Escherichia coli infections, Humans, Infections, Muramidase, Nanomachines, Nanoparticles, Self-propulsion, Silicon dioxide, Urease, Urinary tract infections


Revilla-López, G., Sans, J., Casanovas, J., Bertran, O., Puiggalí, J., Turon, P., Alemán, C., (2020). Analysis of nitrogen fixation by a catalyst capable of transforming N2, CO2 and CH4 into amino acids under mild reactions conditions Applied Catalysis A: General 596, 117526

The processes related to the fixation of nitrogen in a catalyst able to produce glycine and alanine from a N2, CO2 and CH4 gas mixture at mild reaction conditions have been studied by combining experimental and theoretical investigations. Results have allowed to understand the role of different elements of the catalyst, which is constituted by permanently polarized hydroxyapatite (p-HAp), zirconia, and aminotris(methylenephosphonic acid) (ATMP). ATMP attracts N2 molecules towards the surface, maintaining them close to the zirconia and p-HAp components that are the most active from a catalytic point of view. On the other hand, the associative mechanism is thermodynamically favoured under mild reaction conditions with respect to the dissociative one, which is limited by the barrier associated to the Nsingle bondN bond cleavage. Because this reaction mechanism is similar to that employed in the nitrogen fixation by nitrogenase enzymes, these findings provide an opportunity to design new bioinspired catalysts.

JTD Keywords: Artificial photosynthesis, Carbon fixation, Hydroxyapatite, N[sbnd]N bond cleavage


Sans, J., Armelin, E., Sanz, V., Puiggalí, J., Turon, P., Alemán, C., (2020). Breaking-down the catalyst used for the electrophotosynthesis of amino acids by nitrogen and carbon fixation Journal of Catalysis 389, 646-656

The electrophotocatalytic synthesis of Glycine and Alanine from a simple gas mixture containing N2, CO2, CH4 and H2O under mild reaction conditions (95 °C and 6 bar) was recently developed using a catalyst formed by permanently polarized hydroxyapatite, which is achieved using a thermally stimulated polarization process, coated with two layers of aminotris(methylenephosphonic acid) (ATMP) separated by an intermediate layer of zirconyl chloride (ZC). This work reports the optimization of the ATMP- and ZC-coating content by examining the influence of their concentration of each component in each layer on the structural and electrochemical properties of the catalyst. After exhaustive analyses, such properties have been related with the efficiency of the catalysts prepared using different ATMP- and ZC-concentrations to yield Gly and Ala amino acids by fixing nitrogen from N2 and carbon from CO2 and CH4. Results show that, although the concentrations of ATMP and ZC in the first and the intermediate layers are important, the third layer plays a predominant role as is responsible of the apparition of supramolecular structures on the surface and the capacitive behavior of the coating

JTD Keywords: Carbon dioxide fixation, Electrocatalyst, Heterogeneous catalysis, Phosphonic acid, Photocatalyst, Polarized hydroxyapatite, Surface chemistry, Zirconyl chloride


Barba, A., Diez-Escudero, A., Espanol, M., Bonany, M., Sadowska, J. M., Guillem-Marti, J., Öhman-Mägi, C., Persson, C., Manzanares, M. C., Franch, J., Ginebra, M. P., (2019). Impact of biomimicry in the design of osteoinductive bone substitutes: Nanoscale matters ACS Applied Materials and Interfaces 11, (9), 8818-8830

Bone apatite consists of carbonated calcium-deficient hydroxyapatite (CDHA) nanocrystals. Biomimetic routes allow fabricating synthetic bone grafts that mimic biological apatite. In this work, we explored the role of two distinctive features of biomimetic apatites, namely, nanocrystal morphology (plate vs needle-like crystals) and carbonate content, on the bone regeneration potential of CDHA scaffolds in an in vivo canine model. Both ectopic bone formation and scaffold degradation were drastically affected by the nanocrystal morphology after intramuscular implantation. Fine-CDHA foams with needle-like nanocrystals, comparable in size to bone mineral, showed a markedly higher osteoinductive potential and a superior degradation than chemically identical coarse-CDHA foams with larger plate-shaped crystals. These findings correlated well with the superior bone-healing capacity showed by the fine-CDHA scaffolds when implanted intraosseously. Moreover, carbonate doping of CDHA, which resulted in small plate-shaped nanocrystals, accelerated both the intrinsic osteoinduction and the bone healing capacity, and significantly increased the cell-mediated resorption. These results suggest that tuning the chemical composition and the nanostructural features may allow the material to enter the physiological bone remodeling cycle, promoting a tight synchronization between scaffold degradation and bone formation.

JTD Keywords: Biomimetic, Calcium phosphate, Carbonated apatite, Foaming, Nanostructure, Osteogenesis, Osteoinduction


Sebastian, P., Giannotti, M. I., Gómez, E., Feliu, J. M., (2018). Surface sensitive nickel electrodeposition in deep eutectic solvent ACS Applied Energy Materials , 1, (3), 1016-1028

The first steps of nickel electrodeposition in a deep eutectic solvent (DES) are analyzed in detail. Several substrates from glassy carbon to Pt(111) were investigated pointing out the surface sensitivity of the nucleation and growth mechanism. For that, cyclic voltammetry and chronoamperometry, in combination with scanning electron microscopy (SEM), were employed. X-ray diffraction (XRD) and atomic force microscopy (AFM) were used to more deeply analyze the Ni deposition on Pt substrates. In a 0.1 M NiCl2 + DES solution (at 70 °C), the nickel deposition on glassy carbon takes place within the potential limits of the electrode in the blank solution. Although, the electrochemical window of Pt|DES is considerably shorter than on glassy carbon|DES, it was still sufficient for the nickel deposition. On the Pt electrode, the negative potential limit was enlarged while the nickel deposit grew, likely because of the lower catalytic activity of the nickel toward the reduction of the DES. At lower overpotentials, different hydrogenated Ni structures were favored, most likely because of the DES co-reduction on the Pt substrate. Nanometric metallic nickel grains of rounded shape were obtained on any substrate, as evidenced by the FE-SEM. Passivation phenomena, related to the formation of Ni oxide and Ni hydroxylated species, were observed at high applied overpotentials. At low deposited charge, on Pt(111) the AFM measurements showed the formation of rounded nanometric particles of Ni, which rearranged and formed small triangular arrays at sufficiently low applied overpotential. This particle pattern was induced by the (111) orientation and related to surface sensitivity of the nickel deposition in DES. The present work provides deep insights into the Ni electrodeposition mechanism in the selected deep eutectic solvent.

JTD Keywords: AFM, Deep eutectic solvent, Glassy carbon, Nanostructures, Nickel electrodeposition, Platinum electrode, Pt(111), SEM, Surface sensitive


Fonollosa, Jordi, Solórzano, Ana, Marco, Santiago, (2018). Chemical sensor systems and associated algorithms for fire detection: A review Sensors 18, (2), 553

Indoor fire detection using gas chemical sensing has been a subject of investigation since the early nineties. This approach leverages the fact that, for certain types of fire, chemical volatiles appear before smoke particles do. Hence, systems based on chemical sensing can provide faster fire alarm responses than conventional smoke-based fire detectors. Moreover, since it is known that most casualties in fires are produced from toxic emissions rather than actual burns, gas-based fire detection could provide an additional level of safety to building occupants. In this line, since the 2000s, electrochemical cells for carbon monoxide sensing have been incorporated into fire detectors. Even systems relying exclusively on gas sensors have been explored as fire detectors. However, gas sensors respond to a large variety of volatiles beyond combustion products. As a result, chemical-based fire detectors require multivariate data processing techniques to ensure high sensitivity to fires and false alarm immunity. In this paper, we the survey toxic emissions produced in fires and defined standards for fire detection systems. We also review the state of the art of chemical sensor systems for fire detection and the associated signal and data processing algorithms. We also examine the experimental protocols used for the validation of the different approaches, as the complexity of the test measurements also impacts on reported sensitivity and specificity measures. All in all, further research and extensive test under different fire and nuisance scenarios are still required before gas-based fire detectors penetrate largely into the market. Nevertheless, the use of dynamic features and multivariate models that exploit sensor correlations seems imperative

JTD Keywords: Fire detection, Gas sensor, Pattern recognition, Sensor fusion, Machine learning, Toxicants, Carbon monoxide, Hydrogen cyanide, Standard test fires, Transducers, Smoke


Santander-Nelli, M., Silva, C. P., Espinoza-Vergara, J., Silva, J. F., Olguín, C. F., Cortés-Arriagada, D., Zagal, J. H., Mendizabal, F., Díez-Pérez, I., Pavez, J., (2017). Tailoring electroactive surfaces by non-template molecular assembly. Towards electrooxidation of L-cysteine Electrochimica Acta 254, 201-213

We have prepared a nanoelectrode ensemble containing vertically aligned single walled carbon nanotubes (SWCNTs) using a non-template molecular self-assembling strategy. We used a bottom-up construction approach to assemble amino functionalized SWCNTs (af-SWCNTs) in a well-defined architecture. These af-SWCNTs were linked and vertically aligned to pre-formed self-assembled monolayers of 4-MBA. A Cobalt(II) tetracarboxyphthalocyanine (Co(COOH)4Pc) complex was covalently bonded to external portion of af-SWCNTs to complete the final nanoelectrode ensemble. X-ray photoelectron spectroscopy (XPS) and Atomic Force Microcopy (AFM) confirmed the effectiveness of the assembling steps on the gold surface starting from the Au/MBA SAMs. The system Au/4-MBA/af-SWCNTs shows an interface with large ordered array, which exhibits a high activity for the electrooxidation of L-cysteine (L-cys). Theoretical calculations suggest that the incorporation of the af-SWCNTs increased the activity of the assembly to electronic transfer and it was observed that the electrooxidation reaction is energetically favorable.

JTD Keywords: Bottom-up construction, DFT, Modified electrode, Molecular assembly, SAMs, Single walled carbon nanotube


Ramos, E., Pardo, W. A., Mir, M., Samitier, J., (2017). Dependence of carbon nanotubes dispersion kinetics on surfactants Nanotechnology 28, (13), 135702

Carbon nanotubes (CNTs) have been the subject of many studies due to their unique structure and desirable properties. However, the ability to solubilize and separate single CNTs from the bundles they form is still a challenge that needs to be overcome in order to extend their applications in the field of Nanotechnology. Covalent interactions are designed to modify CNTs surface and so prevent agglomeration. Though, this method alters the structures and intrinsic properties of CNTs. In the present work, noncovalent approaches to functionalize and solubilize CNTs are studied in detail. A dispersion kinetic study was performed to characterize the ability of different type of surfactants (non-ionic, anionic, cationic and biopolymer) to unzip CNT bundles. The dispersion kinetic study performed depicts the distinct CNTs bundles unzipping behavior of the different type of surfactants and the results elucidate specific wavelengths in relation with the degree of CNT clustering, which provides new tools for a deeper understanding and characterization of CNTs. Small angle x-ray scattering and transmission electron microscopy results are in agreement with UV-vis-NIR observations, revealing perfectly monodispersed CNTs for the biopolymer and cationic surfactant.

JTD Keywords: Dispersion, DNA, Single-walled carbon nanotubes (SWCNTs), Small angle x-ray scattering (SAXS), Sodium dodecyl sulfate (SDS), Surfactant, Triton X-100


Klein, S., Schierwagen, R., Uschner, F. E., Trebicka, J., (2017). Mouse and rat models of induction of hepatic fibrosis and assessment of portal hypertension Fibrosis (Methods in Molecular Biology) (ed. Rittié, L.), Humana Press (New York, USA) 1627, 91-116

Portal hypertension either develops due to progressive liver fibrosis or is the consequence of vascular liver diseases such as portal vein thrombosis or non-cirrhotic portal hypertension. This chapter focuses on different rodent models of liver fibrosis with portal hypertension and also in few non-cirrhotic portal hypertension models. Importantly, after the development of portal hypertension, the proper assessment of drug effects in the portal and systemic circulation should be discussed. The last part of the chapter is dedicated in these techniques to assess the in vivo hemodynamics and the ex vivo techniques of the isolated liver perfusion and vascular contractility.

JTD Keywords: Aortic ring contraction, Bile duct ligation, Carbon tetrachloride, Colored microsphere technique, High-fat diet, Isolated in situ liver perfusion, Methionine-choline-deficient diet, Partial portal vein ligation, Portal hypertension


Fresco-Cala, B., Jimenez-Soto, J. M., Cardenas, S., Valcarcel, M., (2014). Single-walled carbon nanohorns immobilized on a microporous hollow polypropylene fiber as a sorbent for the extraction of volatile organic compounds from water samples Microchimica Acta , 181, (9-10), 1117-1124

We have evaluated the behavior of single-walled carbon nanohorns as a sorbent for headspace and direct immersion (micro)solid phase extraction using volatile organic compounds (VOCs) as model analytes. The conical carbon nanohorns were first oxidized in order to increase their solubility in water and organic solvents. A microporous hollow polypropylene fiber served as a mechanical support that provides a high surface area for nanoparticle retention. The extraction unit was directly placed in the liquid sample or the headspace of an aqueous standard or a water sample to extract and preconcentrate the VOCs. The variables affecting extraction have been optimized. The VOCs were then identified and quantified by GC/MS. We conclude that direct immersion of the fiber is the most adequate method for the extraction of VOCs from both liquid samples and headspace. Detection limits range from 3.5 to 4.3 ng L-1 (excepted for toluene with 25 ng L-1), and the precision (expressed as relative standard deviation) is between 3.9 and 9.6 %. The method was applied to the determination of toluene, ethylbenzene, various xylene isomers and styrene in bottled, river and tap waters, and the respective average recoveries of spiked samples are 95.6, 98.2 and 86.0 %.

JTD Keywords: (Micro)solid phase extraction, Nanotechnology, Oxidized single-walled carbon nanohorns, Volatiles compounds, Waters


Simao, C., Mas-Torrent, M., Crivillers, N., Lloveras, V., Artés, Juan Manuel, Gorostiza, Pau, Veciana, Jaume, Rovira, C., (2011). A robust molecular platform for non-volatile memory devices with optical and magnetic responses Nature Chemistry , 3, (5), 359-364

Bistable molecules that behave as switches in solution have long been known. Systems that can be reversibly converted between two stable states that differ in their physical properties are particularly attractive in the development of memory devices when immobilized in substrates. Here, we report a highly robust surface-confined switch based on an electroactive, persistent organic radical immobilized on indium tin oxide substrates that can be electrochemically and reversibly converted to the anion form. This molecular bistable system behaves as an extremely robust redox switch in which an electrical input is transduced into optical as well as magnetic outputs under ambient conditions. The fact that this molecular surface switch, operating at very low voltages, can be patterned and addressed locally, and also has exceptionally high long-term stability and excellent reversibility and reproducibility, makes it a very promising platform for non-volatile memory devices.

JTD Keywords: Self-assembled monolayers, Chromophore-based monolayers, Ultrathin platinum films, Carbon free-radicals, Per-million levels, Polychlorotriphenylmethyl radicals, Electron-transfer, Surface, Logic, Quantification


Jaramillo, M. D., Torrents, E., Martinez-Duarte, R., Madou, M. J., Juarez, A., (2010). On-line separation of bacterial cells by carbon-electrode dielectrophoresis Electrophoresis , 31, (17), 2921-2928

Dielectrophoresis (DEP) represents a powerful approach to manipulate and study living cells. Hitherto, several approaches have used 2-D DEP chips. With the aim to increase sample volume, in this study we used a 3-D carbon-electrode DEP chip to trap and release bacterial cells. A continuous flow was used to plug an Escherichia coli cell suspension first, to retain cells by positive DEP, and thereafter to recover them by washing with peptone water washing solution. This approach allows one not only to analyze DEP behavior of living cells within the chip, but also to further recover fractions containing DEP-trapped cells. Bacterial concentration and flow rate appeared as critical parameters influencing the separation capacity of the chip. Evidence is presented demonstrating that the setup developed in this study can be used to separate different types of bacterial cells.

JTD Keywords: Bacteria, Carbon electrode, Dielectrophoresis, E. coli, Separation


Caballero, D., Villanueva, G., Plaza, J. A., Mills, C. A., Samitier, J., Errachid, A., (2010). Sharp high-aspect-ratio AFM tips fabricated by a combination of deep reactive ion etching and focused ion beam techniques Journal of Nanoscience and Nanotechnology , 10, (1), 497-501

The shape and dimensions of an atomic force microscope tip are crucial factors to obtain high resolution images at the nanoscale. When measuring samples with narrow trenches, inclined sidewalls near 90 or nanoscaled structures, standard silicon atomic force microscopy (AFM) tips do not provide satisfactory results. We have combined deep reactive ion etching (DRIE) and focused ion beam (FIB) lithography techniques in order to produce probes with sharp rocket-shaped silicon AFM tips for high resolution imaging. The cantilevers were shaped and the bulk micromachining was performed using the same DRIE equipment. To improve the tip aspect ratio we used FIB nanolithography technique. The tips were tested on narrow silicon trenches and over biological samples showing a better resolution when compared with standard AFM tips, which enables nanocharacterization and nanometrology of high-aspect-ratio structures and nanoscaled biological elements to be completed, and provides an alternative to commercial high aspect ratio AFM tips.

JTD Keywords: Atomic-Force Microscope, Carbon nanotube tips, Probes, Roughness, Cells, Microfabrication, Calibration, Surfaces


Mir, M., Homs, A., Samitier, J., (2009). Integrated electrochemical DNA biosensors for lab-on-a-chip devices Electrophoresis , 30, (19), 3386-3397

Analytical devices able to perform accurate and fast automatic DNA detection or sequencing procedures have many potential benefits in the biomedical and environmental fields. The conversion of biological or biochemical responses into quantifiable optical, mechanical or electronic signals is achieved by means of biosensors. Most of these transducing elements can be miniaturized and incorporated into lab-on-a-chip devices, also known as Micro Total Analysis Systems. The use of multiple DNA biosensors integrated in these miniaturized laboratories, which perform several analytical operations at the microscale, has many cost and efficiency advantages. Tiny amounts of reagents and samples are needed and highly sensitive, fast and parallel assays can be done at low cost. A particular type of DNA biosensors are the ones used based on electrochemical principles. These sensors offer several advantages over the popular fluorescence-based detection schemes. The resulting signal is electrical and can be processed by conventional electronics in a very cheap and fast manner. Furthermore, the integration and miniaturization of electrochemical transducers in a microsystem makes easier its fabrication in front of the most common currently used detection method. In this review, different electrochemical DNA biosensors integrated in analytical microfluidic devices are discussed and some early stage commercial products based on this strategy are presented.

JTD Keywords: DNA, Electrochemical DNA biosensors, Electrochemistry, Lab-on-a-chip, Micro Total Analysis systems, Field-effect transistors, Sequence-specific detection, Chemical-analysis systems, Solid-state nanopores, Carbon nanotubes, Microfluidic device, Electrical detection, Hybridization, Molecules, Sensor