by Keyword: Glass transition
Valenti, S, Arioli, M, Jamett, A, Tamarit, JL, Puiggalí, J, Macovez, R, (2023). Amorphous solid dispersions of curcumin in a poly(ester amide): Antiplasticizing effect on the glass transition and macromolecular relaxation dynamics, and controlled release International Journal Of Pharmaceutics 644, 123333
In order to exploit the pharmacological potential of natural bioactive molecules with low water solubility, such as curcumin, it is necessary to develop formulations, such as amorphous polymer dispersions, which allow a constant release rate and at the same time avoid possible toxicity effects of the crystalline form of the molecule under scrutiny. In this study, polymer dispersions of curcumin were obtained in PADAS, a biodegradable semicrystalline copolymer based on 1,12-dodecanediol, sebacic acid and alanine. The dispersions were fully characterized by means of differential scanning calorimetry and broadband dielectric spectroscopy, and the drug release profile was measured in a simulated body fluid. Amorphous homogeneous binary dispersions were obtained for curcumin mass fraction between 30 and 50%. Curcumin has significantly higher glass transition temperature Tg (≈ 347 K) than the polymer matrix (≈274-277 K depending on the molecular weight), and dispersions displayed Tg's intermediate between those of the pure amorphous components, implying that curcumin acts as an effective antiplasticizer for PADAS. Dielectric spectroscopy was employed to assess the relaxation dynamics of the binary dispersion with 30 wt% curcumin, as well as that of each (amorphous) component separately. The binary dispersion was characterized by a single structural relaxation, a single Johari-Goldstein process, and two local intramolecular processes, one for each component. Interestingly, the latter processes scaled with the Tg of the sample, indicating that they are viscosity-sensitive. In addition, both the pristine polymer and the dispersion exhibited an interfacial Maxwell-Wagner relaxation, likely due to spatial heterogeneities associated with phase disproportionation in this polymer. The release of curcumin from the dispersion in a simulated body fluid followed a Fickian diffusion profile, and 51% of the initial curcumin content was released in 48 h.Copyright © 2023. Published by Elsevier B.V.
JTD Keywords: antioxidant, bioavailability, dielectric spectroscopy, domain havriliak-negami, glass transition temperature, kinetic stability, molecular mobility, nm pores, phase-behavior, physical stability, release kinetics, temperature, thermodynamic quantities, time, Amorphous formulations, Dielectric spectroscopy, Glass transition temperature, Kinetic stability, Kohlrausch-williams-watts, Molecular mobility, Release kinetics
Valenti, S, del Valle, LJ, Romanini, M, Mitjana, M, Puiggali, J, Tamarit, JL, Macovez, R, (2022). Drug-Biopolymer Dispersions: Morphology- and Temperature- Dependent (Anti)Plasticizer Effect of the Drug and Component-Specific Johari–Goldstein Relaxations International Journal Of Molecular Sciences 23, 2456
Amorphous molecule-macromolecule mixtures are ubiquitous in polymer technology and are one of the most studied routes for the development of amorphous drug formulations. For these applications it is crucial to understand how the preparation method affects the properties of the mixtures. Here, we employ differential scanning calorimetry and broadband dielectric spectroscopy to investigate dispersions of a small-molecule drug (the Nordazepam anxiolytic) in biodegradable polylactide, both in the form of solvent-cast films and electrospun microfibres. We show that the dispersion of the same small-molecule compound can have opposite (plasticizing or antiplasticizing) effects on the segmental mobility of a biopolymer depending on preparation method, temperature, and polymer enantiomerism. We compare two different chiral forms of the polymer, namely, the enantiomeric pure, semicrystalline L-polymer (PLLA), and a random, fully amorphous copolymer containing both L and D monomers (PDLLA), both of which have lower glass transition temperature (Tg) than the drug. While the drug has a weak antiplasticizing effect on the films, consistent with its higher Tg, we find that it actually acts as a plasticizer for the PLLA microfibres, reducing their Tg by as much as 14 K at 30%-weight drug loading, namely, to a value that is lower than the Tg of fully amorphous films. The structural relaxation time of the samples similarly depends on chemical composition and morphology. Most mixtures displayed a single structural relaxation, as expected for homogeneous samples. In the PLLA microfibres, the presence of crystalline domains increases the structural relaxation time of the amorphous fraction, while the presence of the drug lowers the structural relaxation time of the (partially stretched) chains in the microfibres, increasing chain mobility well above that of the fully amorphous polymer matrix. Even fully amorphous homogeneous mixtures exhibit two distinct Johari–Goldstein relaxation processes, one for each chemical component. Our findings have important implications for the interpretation of the Johari–Goldstein process as well as for the physical stability and mechanical properties of microfibres with small-molecule additives.
JTD Keywords: amorphous pharmaceuticals, beta-relaxation, constant loss, crystallization, dielectric spectroscopy, dynamics, formulation morphology, glass transition, molecular mobility, nanofibers, polylactide, polymer enantiomerism, secondary relaxations, valium metabolite, viscous-liquids, Amorphous pharmaceuticals, Glass-transition, Secondary relaxations
Zeinali, R, del Valle, LJ, Franco, L, Yousef, I, Rintjema, J, Aleman, C, Bravo, F, Kleij, AW, Puiggali, J, (2022). Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate) Polymers 14, 161--
Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.
JTD Keywords: alternating copolymerization, biobased materials, biodegradability, composites, crystallization, cyclohexene oxide, induced phase-separation, limonene oxide, mechanical-properties, polyesters, scaffolds, spherulites, terpene derivatives, thermal properties, thermally-induced phase separation, Acetone, Bio-based, Bio-based materials, Biobased materials, Biocompatibility, Biodegradability, Butenes, Cell culture, Chlorine compounds, Degradation, Evaporation, Glass transition, Limonene oxide, Monoterpenes, Phase separation, Poly (butylenes succinate), Polybutylene succinate, Property, Ring-opening copolymerization, Scaffolds, Spheru-lites, Tensile strength, Terpene derivatives, Thermal properties, Thermally induced phase separation, Thermally-induced phase separation, Thermally?induced phase separation, Thermodynamic properties, Thermogravimetric analysis
Valenti, S., Yousefzade, O., Puiggalí, J., Macovez, R., (2020). Phase-selective conductivity enhancement and cooperativity length in PLLA/TPU nanocomposite blends with carboxylated carbon nanotubes Polymer 191, 122279
Transmission electron microscopy, temperature-modulated differential scanning calorimetry, and broadband dielectric spectroscopy were employed to characterize ternary nanocomposites consisting of carboxylated carbon nanotubes (CNT) dispersed in a blend of two immiscible polymers, poly(L,lactide) (PLLA) and thermoplastic polyurethane (TPU). The nanocomposite blends were obtained by melt-compounding of PLLA and TPU in the presence of 0.2 wt-% CNT, either in the presence or absence of a Joncryl® ADR chain extender for PLLA, leading to reactive and non-reactive melt mixed samples. In both cases, the binary PLLA/TPU blend is characterized by phase separation into submicron TPU droplets dispersed in the PLLA matrix, and displays two separate glass transition temperatures. The carbon nanotubes are present either inside the TPU phase (samples obtained without chain extender), or at their boundaries (reactive-melt mixed samples). The effect of the sub-micron confinement of the TPU component is to decrease the cooperativity length of the primary segmental relaxation of this polymer, which is accentuated by the presence of the CNT fillers. Depending on the type of sample, five or six distinct relaxations are observed by means of dielectric spectroscopy, which we are able to assign to different dielectric phenomena. Our dielectric data show that the CNT fillers do not contribute directly to the long-range charge transport in the nanocomposite blends, consistent with the nanocomposites morphology, but rather result in a shift of the Maxwell-Wagner-Sillars space-charge frequency associated with charge accumulation at the PLLA/TPU boundary. Such shift testifies to a selective conductivity enhancement of the TPU phase due to the filler.
JTD Keywords: Conductivity enhancement, Cooperatively rearranging region, Dielectric spectroscopy, Glass transition, Maxwell-Wagner-Sillars relaxation, Nanofiller