by Keyword: Biocompatibility
Garcia-de-Albeniz, Nerea, Hodasova, Ludmila, Buxadera-Palomero, Judit, Jimenez-Pique, Emilio, Ginebra, Maria-Pau, Llanes, Luis, Aleman, Carlos, Armelin, Elaine, Mas-Moruno, Carles, Fargas, Gemma, (2024). Peptidic biofunctionalization of infiltrated zirconia scaffolds produced by direct ink writing Ceramics International 50, 36993-37001
Porous zirconia scaffolds manufactured using polymer-infiltrated ceramic network (PICN) and additive manufacturing technologies are emerging as promising alternatives to traditional ceramic materials in dental restorations. However, incomplete osseointegration and bacterial infections still represent challenges for the long-term performance of this new composite material. To address this, the present study aims to investigate the effect of peptide biofunctionalization on the biological performance of infiltrated zirconia scaffold surfaces. The samples used in the work consisted of a 3D-printed zirconia scaffold infiltrated with a dimethacrylate copolymer. Surface biofunctionalization was achieved using a synthetic platform containing the cell-adhesive sequence RGD and the antibacteria LF1-11 peptide (RGD-LF). The attachment of the molecule was characterized through fluorescence confocal laser scanning microscopy and X-ray photoelectron spectroscopy. The biological performance of the samples was evaluated in terms of human mesenchymal stem cell adhesion and early attachment of S. aureus. The physicochemical characterization verified the successful anchoring of the biomolecule to the surface, leading to a peptide density of 288 pmol/cm2. 2 . The biological assays confirmed the potential of RGD-LF to improve cell adhesion and spreading. In this sense, the average cell area increased fourfold in the biofunctionalized surface. Regarding bacterial adhesion, it was demonstrated that RGD-LF significantly inhibited it, reducing early adhesion by half compared to the untreated surface. Overall, this study provides valuable insights into the biofunctionalization of polymer-infiltrated 3D scaffolds for the development of cell-instructive and antibacterial surfaces tailored for dental applications.
JTD Keywords: Antibacteria, Biocompatibility, Cell adhesion, Composite, Dental ceramics, Direct ink writing, Fabrication, Infiltrated zirconia scaffolds, Mechanical-properties, Peptide biofunctionalization, Picn material, Strength, Surface, Topograph, Wear behavior
Witzdam, L, Garay-Sarmiento, M, Gagliardi, M, Meurer, YL, Rutsch, Y, Englert, J, Philipsen, S, Janem, A, Alsheghri, R, Jakob, F, Molin, DGM, Schwaneberg, U, van den Akker, NMS, Rodriguez-Emmenegger, C, (2024). Brush-Like Coatings Provide a Cloak of Invisibility to Titanium Implants Macromolecular Bioscience 24, e2300434
Orthopedic implants such as knee and hip implants are one of the most important types of medical devices. Currently, the surface of the most advanced implants consists of titanium or titanium-alloys with high porosity at the bone-contacting surface leading to superior mechanical properties, excellent biocompatibility, and the capability of inducing osseointegration. However, the increased surface area of porous titanium provides a nidus for bacteria colonization leading to implant-related infections, one of the main reasons for implant failure. Here, two readily applicable titanium-coatings based on hydrophilic carboxybetaine polymers that turn the surface stealth thereby preventing bacterial adhesion and colonization are developed. These coatings are biocompatible, do not affect cell functionality, exhibit great antifouling properties, and do not cause additional inflammation during the healing process. In this way, the coatings can prevent implant-related infections, while at the same time being completely innocuous to its biological environment. Thus, these coating strategies are a promising route to enhance the biocompatibility of orthopedic implants and have a high potential for clinical use, while being easy to implement in the implant manufacturing process.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.
JTD Keywords: bacteria repellency, biocompatibility, blood-plasma, brushes, stealth coatings, surface, titanium implants, Antifouling surfaces, Bacteria repellency, Biocompatibility, Brushes, Polymer brushes, Stealth coatings, Titanium implants
del-Mazo-Barbara, Laura, Johansson, Linh, Tampieri, Francesco, Ginebra, Maria-Pau, (2024). Toughening 3D printed biomimetic hydroxyapatite scaffolds: Polycaprolactone-based self-hardening inks Acta Biomaterialia 177, 506-524
The application of 3D printing to calcium phosphates has opened unprecedented possibilities for the fabrication of personalized bone grafts. However, their biocompatibility and bioactivity are counterbalanced by their high brittleness. In this work we aim at overcoming this problem by developing a self -hardening ink containing reactive ceramic particles in a polycaprolactone solution instead of the traditional approach that use hydrogels as binders. The presence of polycaprolactone preserved the printability of the ink and was compatible with the hydrolysis -based hardening process, despite the absence of water in the ink and its hydrophobicity. The microstructure evolved from a continuous polymeric phase with loose ceramic particles to a continuous network of hydroxyapatite nanocrystals intertwined with the polymer, in a configuration radically different from the polymer/ceramic composites obtained by fused deposition modelling. This resulted in the evolution from a ductile behavior, dominated by the polymer, to a stiffer behavior as the ceramic phase reacted. The polycaprolactone binder provides two highly relevant benefits compared to hydrogel-based inks. First, the handleability and elasticity of the as -printed scaffolds, together with the proven possibility of eliminating the solvent, opens the door to implanting the scaffolds freshly printed once lyophilized, while in a ductile state, and the hardening process to take place inside the body, as in the case of calcium phosphate cements. Second, even with a hydroxyapatite content of more than 92 wt.%, the flexural strength and toughness of the scaffolds after hardening are twice and five times those of the all -ceramic scaffolds obtained with the hydrogel-based inks, respectively. Statement of significance Overcoming the brittleness of ceramic scaffolds would extend the applicability of synthetic bone grafts to high load -bearing situations. In this work we developed a 3D printing ink by replacing the conventional hydrogel binder with a water -free polycaprolactone solution. The presence of polycaprolactone not only enhanced significantly the strength and toughness of the scaffolds while keeping the proportion of bioactive ceramic phase larger than 90 wt.%, but it also conferred flexibility and manipulability to the as -printed scaffolds. Since they are able to harden upon contact with water under physiological conditions, this opens up the possibility of implanting them immediately after printing, while they are still in a ductile state, with clear advantages for fixation and press -fit in the bone defect. (c) 2024 The Authors. Published by Elsevier Ltd on behalf of Acta Materialia Inc. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )
JTD Keywords: 3-d printing, 3d printin, 3d printing, 3d-printing, Binders, Biocompatibility, Biomimetic hydroxyapatites, Biomimetics, Bone, Bone cement, Bone scaffolds, Brittleness, Calcium phosphate, Ceramic phase, Ceramic scaffolds, Ceramics, Ceramics particles, Fracture mechanics, Hardening, Hardening process, Hydrogels, Hydroxyapatite, Mechanical properties, Mechanical-properties, Plasticity, Polycaprolactone, Pyridine, Scaffolds, Scaffolds (biology), Self hardening, Strength and toughness, Thermodynamic properties, Viv
Chen, SQ, Prado-Morales, C, Sánchez-deAlcázar, D, Sánchez, S, (2024). Enzymatic micro/nanomotors in biomedicine: from single motors to swarms Journal Of Materials Chemistry b 12, 2711-2719
Micro/nanomotors (MNMs) have evolved from single self-propelled entities to versatile systems capable of performing one or multiple biomedical tasks. When single MNMs self-assemble into coordinated swarms, either under external control or triggered by chemical reactions, they offer advantages that individual MNMs cannot achieve. These benefits include intelligent multitasking and adaptability to changes in the surrounding environment. Here, we provide our perspective on the evolution of MNMs, beginning with the development of enzymatic MNMs since the first theoretical model was proposed in 2005. These enzymatic MNMs hold immense promise in biomedicine due to their advantages in biocompatibility and fuel availability. Subsequently, we introduce the design and application of single motors in biomedicine, followed by the control of MNM swarms and their biomedical applications. In the end, we propose viable solutions for advancing the development of MNM swarms and anticipate valuable insights into the creation of more intelligent and controllable MNM swarms for biomedical applications.; Micro/nanomotor swarms propelled by diverse mechanisms.
JTD Keywords: Active particles, Actuation, Behaviors, Biocompatibility, Biomedical applications, Coordination reactions, Design and application, Diffusion, External control, Medical applications, Micromotors, Motion, Nanomotors, Powered nanomotors, Propulsion, Self-assemble, Surrounding environment, Theoretical modeling, Versatile system, Viable solutions
Blanco-Cabra, Nuria, Alcacer-Almansa, Julia, Admella, Joana, Arevalo-Jaimes, Betsy Veronica, Torrents, Eduard, (2024). Nanomedicine against biofilm infections: A roadmap of challenges and limitations Wiley Interdisciplinary Reviews-Nanomedicine And Nanobiotechnology 16, e1944
Microbial biofilms are complex three-dimensional structures where sessile microbes are embedded in a polymeric extracellular matrix. Their resistance toward the host immune system as well as to a diverse range of antimicrobial treatments poses a serious health and development threat, being in the top 10 global public health threats declared by the World Health Organization. In an effort to combat biofilm-related microbial infections, several strategies have been developed to independently eliminate biofilms or to complement conventional antibiotic therapies. However, their limitations leave room for other treatment alternatives, where the application of nanotechnology to biofilm eradication has gained significant relevance in recent years. Their small size, penetration efficiency, and the design flexibility that they present makes them a promising alternative for biofilm infection treatment, although they also present set-backs. This review aims to describe the main possibilities and limitations of nanomedicine against biofilms, while covering the main aspects of biofilm formation and study, and the current therapies for biofilm treatment. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
JTD Keywords: Anti-bacterial agents, Anti-infective agents, Antiinfective agent, Antimicrobial, Antimicrobials, Antimicrobials,bacteria,biofilm,infectious diseases,microorganism, Bacteria, Biofilm, Biofilm infections, Biofilms, Complex three dimensional structures, Diseases, Diverse range, Drug-delivery systems,in-vitro,cellular toxicity,nanoparticles,penetration,model,biocompatibility,perspectives,hyperthermia,diagnosi, Extracellular matrices, Global public health, Health risks, Infectious disease, Infectious diseases, Medical nanotechnology, Microbial biofilm, Microorganisms, Nanomedicine, Polymer, Polymers, Regulatory issues, Roadmap
Witzdam, L, Vosberg, B, Grosse-Berkenbusch, K, Stoppelkamp, S, Wendel, HP, Rodriguez-Emmenegger, C, (2024). Tackling the Root Cause of Surface-Induced Coagulation: Inhibition of FXII Activation to Mitigate Coagulation Propagation and Prevent Clotting Macromolecular Bioscience 24, e2300321
Factor XII (FXII) is a zymogen present in blood that tends to adsorb onto the surfaces of blood-contacting medical devices. Once adsorbed, it becomes activated, initiating a cascade of enzymatic reactions that lead to surface-induced coagulation. This process is characterized by multiple redundancies, making it extremely challenging to prevent clot formation and preserve the properties of the surface. In this study, a novel modulatory coating system based on C1-esterase inhibitor (C1INH) functionalized polymer brushes, which effectively regulates the activation of FXII is proposed. Using surface plasmon resonance it is demonstrated that this coating system effectively repels blood plasma proteins, including FXII, while exhibiting high activity against activated FXII and plasma kallikrein under physiological conditions. This unique property enables the modulation of FXII activation without interfering with the overall hemostasis process. Furthermore, through dynamic Chandler loop studies, it is shown that this coating significantly improves the hemocompatibility of polymeric surfaces commonly used in medical devices. By addressing the root cause of contact activation, the synergistic interplay between the antifouling polymer brushes and the modulatory C1INH is expected to lay the foundation to enhance the hemocompatibility of medical device surfaces.© 2023 The Authors. Macromolecular Bioscience published by Wiley-VCH GmbH.
JTD Keywords: adsorption, binding, c1-esterase-inhibitor, coatings, contact activation, factor-xii, fxii activation, hemocompatibility, hemocompatible surface modification, heparin, polymer brushes, system, thrombosis, Adsorption, Anticoagulation, Antifouling agent, Article, Beta-fxiia, Biocompatibility, Blood, Blood clotting, Blood clotting factor 12, Blood clotting factor 12a, Blood clotting factor 12a inhibitor, Blood coagulation, C1-esterase-inhibitor, Cell activation, Chemical activation, Coagulation, Coating (procedure), Complement component c1s inhibitor, Complement system, Controlled study, Dendrimers, Enzyme immobilization, Enzymes, Erythrocyte, Esters, Factor xii, Factor xii activation, Factor xiia, Fibrin deposition, Functional polymers, Fxii activation, Haemocompatibility, Hemocompatibility, Hemocompatible surface modification, Hemostasis, Heparin, Human, Hydrogel, Medical devices, Metabolism, Plasma kallikrein, Plasma protein, Plastic coatings, Platelet count, Polymer, Polymer brushes, Polymerization, Polymers, Property, Root cause, Surface plasmon resonance, Surface property, Surface reactions, Surface-modification, Thrombocyte adhesion, Β-fxiia
Mutreja, I, Lan, CX, Li, QS, Aparicio, C, (2023). Chemoselective Coatings of GL13K Antimicrobial Peptides for Dental Implants Pharmaceutics 15, 2418
Dental implant-associated infection is a clinical challenge which poses a significant healthcare and socio-economic burden. To overcome this issue, developing antimicrobial surfaces, including antimicrobial peptide coatings, has gained great attention. Different physical and chemical routes have been used to obtain these biofunctional coatings, which in turn might have a direct influence on their bioactivity and functionality. In this study, we present a silane-based, fast, and efficient chemoselective conjugation of antimicrobial peptides (Cys-GL13K) to coat titanium implant surfaces. Comprehensive surface analysis was performed to confirm the surface functionalization of as-prepared and mechanically challenged coatings. The antibacterial potency of the evaluated surfaces was confirmed against both Streptococcus gordonii and Streptococcus mutans, the primary colonizers and pathogens of dental surfaces, as demonstrated by reduced bacteria viability. Additionally, human dental pulp stem cells demonstrated long-term viability when cultured on Cys-GL13K-grafted titanium surfaces. Cell functionality and antimicrobial capability against multi-species need to be studied further; however, our results confirmed that the proposed chemistry for chemoselective peptide anchoring is a valid alternative to traditional site-unspecific anchoring methods and offers opportunities to modify varying biomaterial surfaces to form potent bioactive coatings with multiple functionalities to prevent infection.
JTD Keywords: biocompatibility, cytotoxicity, delivery, dental implants, prevention, release, stability, surface coating, titanium, zirconia, Antimicrobial peptide, Biocompatibility, Dental implants, Peri-implantitis, Surface coating, Titanium
Escartín, A, El Hauadi, K, Lanzalaco, S, Perez-Madrigal, MM, Armelin, E, Turon, P, Alemán, C, (2023). Preparation and Characterization of Functionalized Surgical Meshes for Early Detection of Bacterial Infections Acs Biomaterials Science & Engineering 9, 1104-1115
Isotactic polypropylene (i-PP) nonabsorbable surgical meshes are modified by incorporating a conducting polymer (CP) layer to detect the adhesion and growth of bacteria by sensing the oxidation of nicotinamide adenine dinucleotide (NADH), a metabolite produced by the respiration reactions of such microorganisms, to NAD+. A three-step process is used for such incorporation: (1) treat pristine meshes with low-pressure O2 plasma; (2) functionalize the surface with CP nanoparticles; and (3) coat with a homogeneous layer of electropolymerized CP using the nanoparticles introduced in (2) as polymerization nuclei. The modified meshes are stable and easy to handle and also show good electrochemical response. The detection by cyclic voltammetry of NADH within the interval of concentrations reported for bacterial cultures is demonstrated for the two modified meshes. Furthermore, Staphylococcus aureus and both biofilm-positive (B+) and biofilm-negative (B-) Escherichia coli cultures are used to prove real-time monitoring of NADH coming from aerobic respiration reactions. The proposed strategy, which offers a simple and innovative process for incorporating a sensor for the electrochemical detection of bacteria metabolism to currently existing surgical meshes, holds considerable promise for the future development of a new generation of smart biomedical devices to fight against post-operative bacterial infections.
JTD Keywords: adhesion, bacteria metabolism, behavior, biocompatibility, conducting polymer, electrochemical sensor, hernia repair, in-vivo, liquid, nadh detection, plasma treatment, prevention, reinforcement, sensor, smart meshes, Bacteria metabolism, Polypropylene mesh, Smart meshes
Fontana-Escartín, A, Lanzalaco, S, Pérez-Madrigal, MM, Bertran, O, Alemán, C, (2022). Electrochemical activation for sensing of three‐dimensional‐printed poly(lactic acid) using low‐pressure plasma Plasma Processes And Polymers 19, e2200101
JTD Keywords: biocompatibility, blends, design, dopamine detection, electrocatalytic oxidation, electrodes, polymers, sensor, Additive manufacturing, Surface
Clua-Ferre, L, De Chiara, F, Rodriguez-Comas, J, Comelles, J, Martinez, E, Godeau, AL, Garcia-Alaman, A, Gasa, R, Ramon-Azcon, J, (2022). Collagen-Tannic Acid Spheroids for beta-Cell Encapsulation Fabricated Using a 3D Bioprinter Advanced Materials Technologies 7, 2101696
Type 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.© 2022 The Authors. Advanced Materials Technologies published by Wiley‐VCH GmbH.
JTD Keywords: 3d bioprinter, beta-cell, biomaterial, collagen, encapsulation, mechanics, microspheres, survival, 3d bioprinter, ?-cell, Advanced material technologies, Biocompatibility, Cell encapsulations, Cells, Collagen, Cross-linking, Cytology, Drug delivery, Encapsulation, Fabrication, Flavonoids, Gelation, In-vitro, Insulin injections, Insulin release, Microspheres, Tannic acid, Tannins, Throughput, Tissue grafts, Type 1 diabetes, Β‐cell
Narciso, M, Ulldemolins, A, Junior, C, Otero, J, Navajas, D, Farré, R, Gavara, N, Almendros, I, (2022). Novel Decellularization Method for Tissue Slices Frontiers In Bioengineering And Biotechnology 10, 832178
Decellularization procedures have been developed and optimized for the entire organ or tissue blocks, by either perfusion of decellularizing agents through the tissue’s vasculature or submerging large sections in decellularizing solutions. However, some research aims require the analysis of native as well as decellularized tissue slices side by side, but an optimal protocol has not yet been established to address this need. Thus, the main goal of this work was to develop a fast and efficient decellularization method for tissue slices—with an emphasis on lung—while attached to a glass slide. To this end, different decellularizing agents were compared for their effectiveness in cellular removal while preserving the extracellular matrix. The intensity of DNA staining was taken as an indicator of remaining cells and compared to untreated sections. The presence of collagen, elastin and laminin were quantified using immunostaining and signal quantification. Scaffolds resulting from the optimized protocol were mechanically characterized using atomic force microscopy. Lung scaffolds were recellularized with mesenchymal stromal cells to assess their biocompatibility. Some decellularization agents (CHAPS, triton, and ammonia hydroxide) did not achieve sufficient cell removal. Sodium dodecyl sulfate (SDS) was effective in cell removal (1% remaining DNA signal), but its sharp reduction of elastin signal (only 6% remained) plus lower attachment ratio (32%) singled out sodium deoxycholate (SD) as the optimal treatment for this application (6.5% remaining DNA signal), due to its higher elastin retention (34%) and higher attachment ratio (60%). Laminin and collagen were fully preserved in all treatments. The SD decellularization protocol was also successful for porcine and murine (mice and rat) lungs as well as for other tissues such as the heart, kidney, and bladder. No significant mechanical differences were found before and after sample decellularization. The resulting acellular lung scaffolds were shown to be biocompatible (98% cell survival after 72 h of culture). This novel method to decellularize tissue slices opens up new methodological possibilities to better understand the role of the extracellular matrix in the context of several diseases as well as tissue engineering research and can be easily adapted for scarce samples like clinical biopsies. Copyright © 2022 Narciso, Ulldemolins, Júnior, Otero, Navajas, Farré, Gavara and Almendros.
JTD Keywords: biocompatibility, bioscaffold recellularization, decellularization, extracellular matrix, flow, impact, lung, scaffolds, tissue slices, Ammonia, Bio-scaffolds, Biocompatibility, Biological organs, Bioscaffold recellularization, Cell removal, Cells, Collagen, Cytology, Decellularization, Dna, Dna signals, Elastin, Extracellular matrices, Extracellular matrix, Extracellular-matrix, Glycoproteins, Laminin, Lung, Mammals, Recellularization, Scaffolds (biology), Sodium deoxycholate, Sulfur compounds, Tissue, Tissue slice, Tissue slices
Sans, J, Arnau, M, Sanz, V, Turon, P, Alemán, C, (2022). Polarized Hydroxyapatite: New Insights and Future Perspectives Through Systematic Electrical Characterization at the Interface Advanced Materials Interfaces 9, 2101631
JTD Keywords: amino-acids, catalysis, dopant-free hydroxyapatite, electrical properties, electrophotosynthesis, nitrogen, thermally-stimulated polarization, Advanced materials, Biocompatibility, Biomedical applications, Brushite, Doped hydroxyapatites, Electric voltage, Electrical characterization, Electrochemical impedance spectroscopy, Equivalent circuits, Future perspectives, Highest temperature, Hydroxyapatite, Interfaces (materials), Material interfaces, Medical applications, Polarization, Polarization conditions, Surface-charges, Technological applications
Zeinali, R, del Valle, LJ, Franco, L, Yousef, I, Rintjema, J, Aleman, C, Bravo, F, Kleij, AW, Puiggali, J, (2022). Biobased Terpene Derivatives: Stiff and Biocompatible Compounds to Tune Biodegradability and Properties of Poly(butylene succinate) Polymers 14, 161--
Different copolymers incorporating terpene oxide units (e.g., limonene oxide) have been evaluated considering thermal properties, degradability, and biocompatibility. Thus, polycarbonates and polyesters derived from aromatic, monocyclic and bicyclic anhydrides have been considered. Furthermore, ring substitution with myrcene terpene has been evaluated. All polymers were amorphous when evaluated directly from synthesis. However, spherulites could be observed after the slow evaporation of diluted chloroform solutions of polylimonene carbonate, with all isopropene units possessing an R configuration. This feature was surprising considering the reported information that suggested only the racemic polymer was able to crystallize. All polymers were thermally stable and showed a dependence of the maximum degradation rate temperature (from 242 °C to 342 °C) with the type of terpene oxide. The graduation of glass transition temperatures (from 44 °C to 172 °C) was also observed, being higher than those corresponding to the unsubstituted polymers. The chain stiffness of the studied polymers hindered both hydrolytic and enzymatic degradation while a higher rate was detected when an oxidative medium was assayed (e.g., weight losses around 12% after 21 days of exposure). All samples were biocompatible according to the adhesion and proliferation tests performed with fibroblast cells. Hydrophobic and mechanically consistent films (i.e., contact angles between 90° and 110°) were obtained after the evaporation of chloroform from the solutions, having different ratios of the studied biobased polyterpenes and poly(butylene succinate) (PBS). The blend films were comparable in tensile modulus and tensile strength with the pure PBS (e.g., values of 330 MPa and 7 MPa were determined for samples incorporating 30 wt.% of poly(PA-LO), the copolyester derived from limonene oxide and phthalic anhydride. Blends were degradable, biocompatible and appropriate to produce oriented-pore and random-pore scaffolds via a thermally-induced phase separation (TIPS) method and using 1,4-dioxane as solvent. The best results were attained with the blend composed of 70 wt.% PBS and 30 wt.% poly(PA-LO). In summary, the studied biobased terpene derivatives showed promising properties to be used in a blended form for biomedical applications such as scaffolds for tissue engineering.
JTD Keywords: alternating copolymerization, biobased materials, biodegradability, composites, crystallization, cyclohexene oxide, induced phase-separation, limonene oxide, mechanical-properties, polyesters, scaffolds, spherulites, terpene derivatives, thermal properties, thermally-induced phase separation, Acetone, Bio-based, Bio-based materials, Biobased materials, Biocompatibility, Biodegradability, Butenes, Cell culture, Chlorine compounds, Degradation, Evaporation, Glass transition, Limonene oxide, Monoterpenes, Phase separation, Poly (butylenes succinate), Polybutylene succinate, Property, Ring-opening copolymerization, Scaffolds, Spheru-lites, Tensile strength, Terpene derivatives, Thermal properties, Thermally induced phase separation, Thermally-induced phase separation, Thermally?induced phase separation, Thermodynamic properties, Thermogravimetric analysis
Duro-Castano, A, Rodríguez-Arco, L, Ruiz-Pérez, L, De Pace, C, Marchello, G, Noble-Jesus, C, Battaglia, G, (2021). One-Pot Synthesis of Oxidation-Sensitive Supramolecular Gels and Vesicles Biomacromolecules 22, 5052-5064
Polypeptide-based nanoparticles offer unique advantages from a nanomedicine perspective such as biocompatibility, biodegradability, and stimuli-responsive properties to (patho)physiological conditions. Conventionally, self-assembled polypeptide nanostructures are prepared by first synthesizing their constituent amphiphilic polypeptides followed by postpolymerization self-assembly. Herein, we describe the one-pot synthesis of oxidation-sensitive supramolecular micelles and vesicles. This was achieved by polymerization-induced self-assembly (PISA) of the N-carboxyanhydride (NCA) precursor of methionine using poly(ethylene oxide) as a stabilizing and hydrophilic block in dimethyl sulfoxide (DMSO). By adjusting the hydrophobic block length and concentration, we obtained a range of morphologies from spherical to wormlike micelles, to vesicles. Remarkably, the secondary structure of polypeptides greatly influenced the final morphology of the assemblies. Surprisingly, wormlike micellar morphologies were obtained for a wide range of methionine block lengths and solid contents, with spherical micelles restricted to very short hydrophobic lengths. Wormlike micelles further assembled into oxidation-sensitive, self-standing gels in the reaction pot. Both vesicles and wormlike micelles obtained using this method demonstrated to degrade under controlled oxidant conditions, which would expand their biomedical applications such as in sustained drug release or as cellular scaffolds in tissue engineering.
JTD Keywords: alpha-amino-acid, hydrogels, leuchs anhydrides, platform, polypeptides, transformation, triggered cargo release, Amino acids, Amphiphilics, Biocompatibility, Biodegradability, Block lengths, Controlled drug delivery, Dimethyl sulfoxide, Ethylene, Gels, Hydrophobicity, Medical nanotechnology, Methionine, Micelles, Morphology, One-pot synthesis, Organic solvents, Oxidation, Physiological condition, Polyethylene oxides, Post-polymerization, Ring-opening polymerization, Scaffolds (biology), Self assembly, Stimuli-responsive properties, Supramolecular chemistry, Supramolecular gels, Supramolecular micelles, Wormlike micelle
García-Mintegui, C, Córdoba, LC, Buxadera-Palomero, J, Marquina, A, Jiménez-Piqué, E, Ginebra, MP, Cortina, JL, Pegueroles, M, (2021). Zn-Mg and Zn-Cu alloys for stenting applications: From nanoscale mechanical characterization to in vitro degradation and biocompatibility Bioactive Materials 6, 4430-4446
In the recent decades, zinc (Zn) and its alloys have been drawing attention as promising candidates for bioresorbable cardiovascular stents due to its degradation rate more suitable than magnesium (Mg) and iron (Fe) alloys. However, its mechanical properties need to be improved in order to meet the criteria for vascular stents. This work investigates the mechanical properties, biodegradability and biocompatibility of Zn-Mg and Zn-Cu alloys in order to determine a proper alloy composition for optimal stent performance. Nanoindentation measurements are performed to characterize the mechanical properties at the nanoscale as a function of the Zn microstructure variations induced by alloying. The biodegradation mechanisms are discussed and correlated to microstructure, mechanical performance and bacterial/cell response. Addition of Mg or Cu alloying elements refined the microstructure of Zn and enhanced yield strength (YS) and ultimate tensile strength (UTS) proportional to the volume fraction of secondary phases. Zn-1Mg showed the higher YS and UTS and better performance in terms of degradation stability in Hanks’ solution. Zn-Cu alloys presented an antibacterial effect for S. aureus controlled by diffusion mechanisms and by contact. Biocompatibility was dependent on the degradation rate and the nature of the corrosion products.
JTD Keywords: behavior, biocompatibility, biodegradable metals, bioresorbable metals, bioresorbable scaffold, copper, corrosion properties, elastic-modulus, galvanic corrosion, microstructure, nanoindentation, redox homeostasis, zinc, Biocompatibility, Bioresorbable metals, Galvanic corrosion, Nanoindentation, Room-temperature superplasticity, Zinc alloys
Chausse, V, Schieber, R, Raymond, Y, Ségry, B, Sabaté, R, Kolandaivelu, K, Ginebra, MP, Pegueroles, M, (2021). Solvent-cast direct-writing as a fabrication strategy for radiopaque stents Additive Manufacturing 48, 102392
JTD Keywords: biocompatibility, bioresorbable stents, degradation, mechanical-properties, poly(epsilon-caprolactone), poly-l-lactic acid, polylactide, radiopacity, thermogel, x-ray imaging, Barium sulfate, Biocompatibility, Bioresorbable, Bioresorbable scaffolds, Bioresorbable stent, Bioresorbable stents, Blood vessels, Computerized tomography, Controlled drug delivery, Coronary heart disease, Direct-writing, Endothelial cells, Fabrication strategies, Injection molding, Lactic acid, Poly-l-lactic acid, Poly-l-lactic acids, Radiopacity, Scaffolds (biology), Solvent cast, Solvent-cast direct-writing, Solvents, Stents, Struts, Sulfur compounds, Targeted drug delivery, X-ray imaging
De Matteis, V, Cascione, M, Rizzello, L, Manno, DE, Di Guglielmo, C, Rinaldi, R, (2021). Synergistic effect induced by gold nanoparticles with polyphenols shell during thermal therapy: Macrophage inflammatory response and cancer cell death assessment Cancers 13, 3610
Background: In recent decades, gold nanoparticle (Au NP)-based cancer therapy has been heavily debated. The physico-chemical properties of AuNPs can be exploited in photothermal therapy, making them a powerful tool for selectively killing cancer cells. However, the synthetic side products and capping agents often induce a strong activation of the inflammatory pathways of macrophages, thus limiting their further applications in vivo. Methods: Here, we described a green method to obtain stable polyphenol-capped AuNPs (Au NPs@polyphenols), as polyphenols are known for their anti-inflammatory and anticancer properties. These NPs were used in human macrophages to test key inflammation-related markers, such as NF-κB, TNF-α, and interleukins-6 and 8. The results were compared with similar NPs obtained by a traditional chemical route (without the polyphenol coating), proving the potential of Au NPs@polyphenols to strongly promote the shutdown of inflammation. This was useful in developing them for use as heat-synergized tools in the thermal treatment of two types of cancer cells, namely, breast cancer (MCF-7) and neuroblastoma (SH-SY5Y) cells. The cell viability, calcium release, oxidative stress, HSP-70 expression, mitochondrial, and DNA damage, as well as cytoskeleton alteration, were evaluated. Results: Our results clearly demonstrate that the combined strategy markedly exerts anticancer effects against the tested cancer cell, while neither of the single treatments (only heat or only NPs) induced significant changes. Conclusions: Au NP@polyphenols may be powerful agents in cancer treatment.
JTD Keywords: antioxidant, aunps, biocompatibility, biology, calcium, cancer, green synthesis, inflammation response, inhibition, interleukin-6, mechanisms, natural polyphenols, physico-chemical properties, polyphenols, size, thermal treatment, Aunps, Cancer, Green synthesis, Inflammation response, Nobilis l. leaves, Physico-chemical properties, Polyphenols, Thermal treatment
Dulay, Samuel, Rivas, Lourdes, Miserere, Sandrine, Pla, Laura, Berdun, Sergio, Parra, Johanna, Eixarch, Elisenda, Gratacos, Eduard, Illa, Miriam, Mir, Monica, Samitier, Josep, (2021). in vivo Monitoring with micro-implantable hypoxia sensor based on tissue acidosis Talanta 226, 122045
© 2020 Elsevier B.V. Hypoxia is a common medical problem, sometimes difficult to detect and caused by different situations. Control of hypoxia is of great medical importance and early detection is essential to prevent life threatening complications. However, the few current methods are invasive, expensive, and risky. Thus, the development of reliable and accurate sensors for the continuous monitoring of hypoxia is of vital importance for clinical monitoring. Herein, we report an implantable sensor to address these needs. The developed device is a low-cost, miniaturised implantable electrochemical sensor for monitoring hypoxia in tissue by means of pH detection. This technology is based on protonation/deprotonation of polypyrrole conductive polymer. The sensor was optimized in vitro and tested in vivo intramuscularly and ex vivo in blood in adult rabbits with respiration-induced hypoxia and correlated with the standard device ePOCTM. The sensor demonstrated excellent sensitivity and reproducibility; 46.4 ± 0.4 mV/pH in the pH range of 4–9 and the selectivity coefficient exhibited low interference activity in vitro. The device was linear (R2 = 0.925) with a low dispersion of the values (n = 11) with a cut-off of 7.1 for hypoxia in vivo and ex vivo. Statistics with one-way ANOVA (α = 0.05), shows statistical differences between hypoxia and normoxia states and the good performance of the pH sensor, which demonstrated good agreement with the standard device. The sensor was stable and functional after 18 months. The excellent results demonstrated the feasibility of the sensors in real-time monitoring of intramuscular tissue and blood for medical applications.
JTD Keywords: biocompatibility, blood-flow, clinical monitoring, electrochemical biosensor, electrodes, hypoxia, implantable sensor, in vivo tissue monitoring, ischemia, lactate, ph, ph sensor, rabbits, responses, vitro, Clinical monitoring, Dual signal outputs, Hypoxia, Implantable sensor, In vivo tissue monitoring, Ischemia, Ph sensor
Vidal, E, Guillem-Marti, J, Ginebra, MP, Combes, C, Ruperez, E, Rodriguez, D, (2021). Multifunctional homogeneous calcium phosphate coatings: Toward antibacterial and cell adhesive titanium scaffolds Surface & Coatings Technology 405, 126557
Implants for orthopedic applications need to be biocompatible and bioactive, with mechanical properties similar to those of surrounding natural bone. Given this scenario titanium (Ti) scaffolds obtained by Direct Ink Writing technique offer the opportunity to manufacture customized structures with controlled porosity and mechanical properties. Considering that 3D Ti scaffolds have a significant surface area, it is necessary to develop strategies against the initial bacterial adhesion in order to prevent infection in the early stages of the implantation, while promoting cell adhesion to the scaffold. The challenge is not only achieving a balance between antibacterial activity and osseointegration, it is also to develop a homogeneous coating on the inner and outer surface of the scaffold. The purpose of this work was the development of a single-step electrodeposition process in order to uniformly cover Ti scaffolds with a layer of calcium phosphate (CaP) loaded with chlorhexidine digluconate (CHX). Scaffold characterization was assessed by scanning electron microscopy, Energy dispersive X-ray spectroscopy, X-ray diffraction, micro-Raman microscopy and compressive strength tests. Results determined that the surface of scaffolds was covered by plate-like and whisker-like calcium phosphate crystals, which main phases were octacalcium phosphate and brushite. Biological tests showed that the as-coated scaffolds reduced bacteria adhesion (73 +/- 3% for Staphylococcus aureus and 70 +/- 2% for Escherichia coli). In vitro cell studies and confocal analysis revealed the adhesion and spreading of osteoblast-like SaOS-2 on coated surfaces. Therefore, the proposed strategy can be a potential candidate in bone replacing surgeries.
JTD Keywords: Antibacterial, Bacterial, Behavior, Biocompatibility, Calcium phosphate coating, Chlorhexidine, Chlorhexidine digluconate, Deposition, Electrodeposition, Hydroxyapatite coatings, Implants, One-step pulse electrodeposition, Plasma-spray, Release, Surface, Titanium scaffolds
Khurana, Kanupriya, Müller, Frank, Jacobs, Karin, Faidt, Thomas, Neurohr, Jens-Uwe, Grandthyll, Samuel, Mücklich, Frank, Canal, Cristina, Pau Ginebra, Maria, (2018). Plasma polymerized bioceramics for drug delivery: Do surface changes alter biological behaviour? European Polymer Journal 107, 25-33
One of the treatments for recurrent or complicated osteomyelitis is by local antibiotherapy mediated by suitable bone grafts. β–Tricalcium Phosphate (β–TCP) bioceramic is a resorbable bone graft. Its microporosity allows for incorporation of drugs, but a too fast release is often obtained. Complex strategies have been explored to obtain controlled drug release. In this work, plasma polymerization of a biocompatible polymer was investigated on β-TCP. Polyethyleneglycol (PEG)-like polymer coatings of different thickness were deposited on microporous β-TCP loaded with antibiotics. A highly hydrophobic surface was obtained despite the hydrophilicity of the PEG-like layer produced, which was associated to the roughness of the β-TCP substrate. The bioceramics nevertheless retained their suitable biological behavior with regard to human osteoblast cells. The microbiological activity of the antibiotics was preserved, and the coatings reduced the total amount of drug released as a function of the increasing plasma treatment time.
JTD Keywords: Plasma polymerization, β–Tricalcium phosphate, PEG-like polymer, Antibiotics, Drug release, Biocompatibility
Mir, M., Lugo, R., Tahirbegi, I. B., Samitier, J., (2014). Miniaturizable ion-selective arrays based on highly stable polymer membranes for biomedical applications Sensors 14, (7), 11844-11854
Poly(vinylchloride) (PVC) is the most common polymer matrix used in the fabrication of ion-selective electrodes (ISEs). However, the surfaces of PVC-based sensors have been reported to show membrane instability. In an attempt to overcome this limitation, here we developed two alternative methods for the preparation of highly stable and robust ion-selective sensors. These platforms are based on the selective electropolymerization of poly(3,4-ethylenedioxythiophene) (PEDOT), where the sulfur atoms contained in the polymer covalently interact with the gold electrode, also permitting controlled selective attachment on a miniaturized electrode in an array format. This platform sensor was improved with the crosslinking of the membrane compounds with poly(ethyleneglycol) diglycidyl ether (PEG), thus also increasing the biocompatibility of the sensor. The resulting ISE membranes showed faster signal stabilization of the sensor response compared with that of the PVC matrix and also better reproducibility and stability, thus making these platforms highly suitable candidates for the manufacture of robust implantable sensors.
JTD Keywords: Biomedicine, Electrochemistry, Endoscope, Implantable device, Ion-selective electrode (ISE) sensor, Ischemia, pH detection, Biocompatibility, Chemical sensors, Electrochemistry, Electrodes, Electropolymerization, Endoscopy, Functional polymers, Implants (surgical), Ion selective electrodes, Medical applications, Polyvinyl chlorides, Stabilization, Biomedical applications, Biomedicine, Implantable devices, Ion selective sensors, Ischemia, Membrane instability, pH detection, Poly(3 ,4 ethylenedioxythiophene) (PEDOT), Ion selective membranes
Levato, Riccardo, Mateos-Timoneda, Miguel A., Planell, Josep A., (2012). Preparation of biodegradable polylactide microparticles via a biocompatible procedure Macromolecular Bioscience 12, (4), 557-566
PLA MPs are prepared via a novel and toxic-chemical-free fabrication route using ethyl lactate, a green solvent and FDA-approved aroma. MPs are obtained by a solution jet break-up and solvent displacement method. Adjusting flow parameters allows the tuning of MPs size between 60 and 180 µm, with reduced polydispersity. Morphological analysis shows microporous particles with Janus-like surface. A fluorophore is successfully loaded into the MPs during their formation step. This versatile green solvent-based procedure is proven to be suitable for drug encapsulation and delivery applications. The method may be extended to different droplet generation techniques.
JTD Keywords: Biocompatibility, Biodegradable, Green solvents, Microparticles, Poly(lactic acid)
Yue, J. J., Morgenstern, R., Morgenstern, C., Lauryssen, C., (2011). Shape memory hydrogels - A novel material for treating age-related degenerative conditions of the Spine European Musculoskeletal Review , 6, (3), 184-188
Hydrogels are water-insoluble hydrophilic polymers used in a wide range of medical products such as, drug delivery, tissue replacement, heart surgery, gynaecology, ophthalmology, plastic surgery and orthopaedic surgery. These polymers exhibit low toxicity, reduced tissue adherence, and are highly biocompatible. A class of hydrogels, hydrolysed polyacrylonitriles, possess unique shape memory properties, which, when combined with biodurability, mechanical strength and viscoelasticity make them ideal for treating certain degenerative conditions of the spine. Animal and other in vitro studies have shown that the hydrogel is biocompatible and well tolerated by host tissues. This article focuses on two specific indications in spine surgery that demonstrate the potential of hydrogel-based technology to provide significant treatment advantages.
JTD Keywords: Biocompatibility, Degenerative disc disease, Hydrolysed polyacrylonitrile, Minimally invasive surgery, Shape memory hydrogel, Spinal stenosis
Comelles, J., Estevez, M., Martinez, E., Samitier, J., (2010). The role of surface energy of technical polymers in serum protein adsorption and MG-63 cells adhesion Nanomedicine: Nanotechnology Biology and Medicine , 6, (1), 44-51
Polymeric materials are widely used as supports for cell culturing in medical implants and as scaffolds for tissue regeneration. However, novel applications in the biosensor field require materials to be compatible with cell growth and at the same time be suitable for technological processing. Technological polymers are key materials in the fabrication of disposable parts and other sensing elements. As such, it is essential to characterize the surface properties of technological polymers, especially after processing and sterilization. It is also important to understand how technological polymers affect cell behavior when in contact with polymer materials. Therefore, the aim of this research was to study how surface energy and surface roughness affect the biocompatibility of three polymeric materials widely used in research and industry: poly (methyl methacrylate), polystyrene, and poly(dimethylsiloxane). Glass was used as the control material. From the Clinical Editor: Polymeric materials are widely used as supports for cell culturing in medical implants and as scaffolds for tissue regeneration. The aim of this research is to study how surface energy and surface roughness affect the biocompatibility of three polymeric materials widely used in research and industry: poly(methylmethacrylate) (PMMA), polystyrene (PS), and poly(dimethylsiloxane) (PDMS).
JTD Keywords: Thin-films, Poly(methyl methacrylate), Osteoblast adhesion, Electron-microscopy, Fibronectin, Polystyrene, Oly(dimethylsiloxane), Biocompatibility, Hydroxyapatite, Behavior
Gugutkov, Dencho, Gonzalez-Garcia, Cristina, Rodriguez Hernandez, Jose Carlos, Altankov, George, Salmeron-Sanchez, Manuel, (2009). Biological activity of the substrate-induced fibronectin network: insight into the third dimension through electrospun fibers Langmuir 25, (18), 10893-10900
Fibronectin (FN) fibrillogenesis is a cell-mediated process involving integrin activation that results in conformational changes of FN molecules and the organization of actin cytoskeleton. A similar process can be induced by some chemistries in the absence of cells, e.g., poly(ethyl acrylate) (PEA), which enhance FN-FN interactions leading to the formation of a biologically active network. Atomic force microscopy images of single FN molecules, at the early stages of adsorption on plane PEA, allow one to rationalize the process. Further, the role of the spatial organization of the FN network on the cellular response is investigated through its adsorption on electrospun fibers. Randomly oriented and aligned PEA fibers were prepared to mimic the three-dimensional organization of the extracellular matrix. The formation of the FN network on the PEA fibers but not on the supporting coverglass was confirmed. Fibroblasts aligned with oriented fibers, displayed extended morphology, developed linearly organized focal adhesion complexes, and matured actin filaments. Conversely, on random PEA fibers, cells acquired polygonal morphology with altered actin cytoskeleton but well-developed focal adhesions. Late FN matrix formation was also influenced: spatially organized FN matrix fibrils along the oriented PEA fibers and an altered arrangement on random ones.
JTD Keywords: AFM, Cell-adhesion, Dependent conformations, Hydrophobic surfaces, Extracellular-matrix, Bound fibronectin, Polymer surfaces, Integrin binding, Biocompatibility, Adsorption
Rico, P., Rodriguez Hernandez, J. C., Moratal, D., Altankov, G., Monleon Pradas, M., Salmeron-Sanchez, M., (2009). Substrate-induced assembly of fibronectin into networks. Influence of surface chemistry and effect on osteoblast adhesion Tissue Engineering Part A , 15, (00), 1-11
The influence of surface chemistry -substrates with controlled surface density of -OH groups- on fibronectin conformation and distribution is directly observed by Atomic Force Microscopy (AFM). FN fibrillogenesis, which is known to be a process triggered by interaction with integrins, is shown in our case to be induced by the substrate (in absence of cells), which is able to enhance FN-FN interactions leading to the formation of a protein network on the material surface. This phenomenon depends both on surface chemistry and protein concentration. The level of the FN fibrillogenesis was quantified by calculating the fractal dimension of the adsorbed protein from image analysis of the AFM results. The total amount of adsorbed FN is obtained by making use of a methodology which employs western-blotting combined with image analysis of the corresponding protein bands, with the lowest sensitivity threshold equal to 15 ng of adsorbed protein. Furthermore, FN adsorption is correlated to human osteoblast adhesion through morphology and actin cytoskeleton formation. Actin polymerization is in need of the formation of the protein network on the substrate's surface. Cell morphology is more rounded (as quantified by calculating the circularity of the cells by image analysis) the lower the degree of FN fibrillogenesis on the substrate.
JTD Keywords: Cell-adhesion, Conformational-changes, Electron-microscopy, Protein adsorption, Fractal dimension, Integrin binding, Biocompatibility, Monolayers, Matrix, Fibrillogenesis