by Keyword: Glyoxal
Colombi, S, Mingot, J, Morgado, J, Pérez-Madrigal, MM, García-Torres, J, Armelin, E, Alemán, C, (2025). Stabilizing Semi-Interpenetrated Alginate/Pedot Hydrogels via Glyoxal-Mediated Covalent Crosslinks for Water Steam Generation Advanced Sustainable Systems 9, 2401005
The chemical and physical stability of bio-hydrogels are of utmost interest to avoid the premature degradation of the polymer and to favor cyclic material operations (i.e., material recovery and re-using). In this work, the stability of different alginate hydrogels semi-interpenetrated with poly(3,4-ethylenedioxythiophene):polystyrene sulfonate conducting polymer (Alg/PEDOT), which acts as a photothermal absorber is examined. More specifically, the behavior of Alg/PEDOT hydrogels ionically and covalently crosslinked with Ca2+ ions and glyoxal, respectively, has been compared when used as water purification platforms. The homogenous porosity and higher cycling capacity of the glyoxal-crosslinked gels provide superior performance for water-steam generation under sunlight irradiation than that of the ionically stabilized gel. Furthermore, increasing the glyoxal cross-linking reaction time prove to have little effect on the porosity and the efficiency of freshwater supply from an artificial seawater solution. Covalent cross-links provide thermal absorber (PEDOT:PSS) retention capacity in artificial seawater, which is critical to maintaining such efficiency with the increasing number of purification cycles. This research opens new frontiers to promote the use of alginate biopolymer in chemical engineering processes such as water desalination, directly addressing the United Nations Sustainable Development Goals for Clean Water & Life on Land.
JTD Keywords: 4-ethylenedioxythiophene, Alginate polysaccharide, Cell delivery, Glyoxal, Interpenetrating hydrogel network, Poly(3, Raman-spectroscopy, Sodium alginate, Tissu
Guallar-Garrido, S, Almiñana-Rapún, F, Campo-Pérez, V, Torrents, E, Luquin, M, Julián, E, (2022). BCG Substrains Change Their Outermost Surface as a Function of Growth Media Vaccines 10, 40
Mycobacterium bovis bacillus Calmette-Guérin (BCG) efficacy as an immunotherapy tool can be influenced by the genetic background or immune status of the treated population and by the BCG substrain used. BCG comprises several substrains with genetic differences that elicit diverse phenotypic characteristics. Moreover, modifications of phenotypic characteristics can be influenced by culture conditions. However, several culture media formulations are used worldwide to produce BCG. To elucidate the influence of growth conditions on BCG characteristics, five different substrains were grown on two culture media, and the lipidic profile and physico-chemical properties were evaluated. Our results show that each BCG substrain displays a variety of lipidic profiles on the outermost surface depending on the growth conditions. These modifications lead to a breadth of hydrophobicity patterns and a different ability to reduce neutral red dye within the same BCG substrain, suggesting the influence of BCG growth conditions on the interaction between BCG cells and host cells.
JTD Keywords: cell wall, efficacy, glycerol, hydrophobicity, lipid, neutral red, pdim, pgl, protein, strains, viability, virulence, Acylglycerol, Albumin, Article, Asparagine, Bacterial cell wall, Bacterial gene, Bacterium culture, Bcg vaccine, Catalase, Cell wall, Chloroform, Controlled study, Escherichia coli, Gene expression, Genomic dna, Glycerol, Glycerol monomycolate, Hexadecane, Housekeeping gene, Hydrophobicity, Immune response, Immunogenicity, Immunotherapy, Lipid, Lipid fingerprinting, Magnesium sulfate, Mercaptoethanol, Methanol, Methylglyoxal, Molybdatophosphoric acid, Mycobacterium bovis bcg, Neutral red, Nonhuman, Pdim, Petroleum ether, Pgl, Phenotype, Physical chemistry, Real time reverse transcription polymerase chain reaction, Rna 16s, Rna extraction, Rv0577, Staining, Thin layer chromatography, Unclassified drug