DONATE

Publications

Access IBEC scientific production portal (IBEC CRIS), for more detailed information and advanced search features.

Find here the list of all IBEC's publications by year.

by Keyword: Gut microbiota

Mulet, Maria, Milan, Jose Antonio Sanchez, Lorca, Cristina, Fernandez-Rhodes, Maria, Adrados-Planell, Ana, Castillo, Maria Consuelo Bejarano, Saiz, Laura, Mateos-Moreno, Maria-Victoria, Hase, Yoshiki, Mira, Alex, Rabano, Alberto, del Ser, Teodoro, Kalaria, Raj N, Lagunas, Anna, Mir, Monica, Crespo, Andres, Samitier, Josep, Gallart-Palau, Xavier, Serra, Aida, (2025). Oral Microbiome-Derived Proteins in Brain Extracellular Vesicles Circulate and Tie to Specific Dysbiotic and Neuropathological Profiles in Age-Related Dementias Molecular & Cellular Proteomics 24, 101464

The involvement of the oral microbiome (OM) in the pathophysiology of Alzheimer's disease and vascular dementia has been recognized epidemiologically, but the molecular mechanisms remain elusive. In this study, we uncovered the presence of OM-derived proteins (OMdPs) in brain extracellular vesicles (bEVs) from post-mortem Alzheimer's disease and vascular dementia subjects using unbiased metaproteomics. OMdP circulation in blood EVs was also confirmed in an independent cohort. Our findings also reveal that specific OMdPs are present in bEVs, with their levels varying with disease progression. Peptidome-wide correlation analyses further explored their exchange dynamics and composition within bEVs. In addition, we validated the ability of OM-derived EVs to cross the blood-brain barrier using a blood-brain barrier-on-a-chip model, confirming a potential route for bacterial-derived molecules to reach the central nervous system. Bioinformatics-driven interaction analyses indicated that OMdPs engage with key neuropathological proteins, including amyloid-beta and tau, suggesting a novel mechanism linking dysbiotic OM to dementia. These results provide new insights into the role of the OM in neurodegeneration and highlight OMdPs as potential biomarkers and therapeutic targets.

JTD Keywords: Alzheimers-disease, Communication, Expression, Gut microbiota, Health, Insights, Rna, Virulence factors


Allaw, M., Manca, M. L., Caddeo, C., Recio, M. C., Pérez-Brocal, V., Moya, A., Fernàndez-Busquets, X., Manconi, M., (2020). Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health Colloids and Surfaces B: Biointerfaces 193, 111146

Grape extract-loaded fibre-enriched vesicles, nutriosomes, were prepared by combining antioxidant extracts obtained from grape pomaces and a prebiotic, soluble fibre (Nutriose®FM06). The nutriosomes were small in size (from ∼140 to 260 nm), homogeneous (polydispersity index < 0.2) and highly negative (∼ −79 mV). The vesicles were highly stable during 12 months of storage at 25 °C. When diluted with warmed (37 °C) acidic medium (pH 1.2) of high ionic strength, the vesicles only displayed an increase of the mean diameter and a low release of the extract, which were dependent on Nutriose concentration. The formulations were highly biocompatible and able to protect intestinal cells (Caco-2) from oxidative stress damage. In vivo results underlined that the composition of mouse microbiota was not affected by the vesicular formulations. Overall results support the potential application of grape nutriosomes as an alternative strategy for the protection of the intestinal tract.

JTD Keywords: Antioxidant activity, Grape pomace, Gut microbiota, In vivo studies, Intestinal cells, Nutriosomes, Phospholipid vesicles, Prebiotic activity