by Keyword: Grape pomace
Rached, Rita Abi, Shakya, Ashok K, Fulgheri, Federica, Aroffu, Matteo, Castangia, Ines, Garcia-Villen, Fatima, Ferraro, Maria, Fernandez-Busquets, Xavier, Pedraz, Jose Luis, Louka, Nicolas, Maroun, Richard G, Manconi, Maria, Manca, Maria Letizia, (2025). Resveratrol and grape pomace extract incorporated in modified phospholipid vesicles: A potential strategy to mitigate cigarette smoke-induced oxidative stress Free Radical Biology And Medicine 230, 151-162
In this study, the extraction process of grape pomace from the Lebanese autochthonous cultivar Asswad Karech was enhanced through the selection of specific parameters, yielding an antioxidant extract (20 mg/mL) that was co-loaded with resveratrol (5 mg/mL) into phospholipid vesicles containing penetration enhancers (PEVs). Propylene glycol (PG) was incorporated as a penetration enhancer at concentrations of 10, 20, and 30 % to obtain 10 PG-PEVs, 20 PG-PEVs, and 30 PG-PEVs. Vesicle preparation was achieved through direct sonication, yielding unilamellar and bilamellar vesicles with an average size of similar to 205; 234 nm, a monodisperse distribution (polydispersity index
JTD Keywords: By-product valorisation, Cigarette smoke, Delivery, Dru, Grape pomace extract, In-vitro, Liposomes, Lung deliver, Oxidative stress, Phospholipids vesicles
Perra, M, Manca, ML, Tuberoso, CIG, Caddeo, C, Marongiu, F, Peris, JE, Orru, G, Ibba, A, Fernandez-Busquets, X, Fattouch, S, Bacchetta, G, Manconi, M, (2022). A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification Innovative Food Science & Emerging Technologies 80, 103103
According to circular economy, wine-making by-products represent a fascinating biomass, which can be used for the sustainable exploitation of polyphenols and the development of new nanotechnological health-promoting products. In this study, polyphenols contained in the grape pomace were extracted by maceration with ethanol in an easy and low dissipative way. The obtained extract, rich in malvidin-3-glucoside, quercetin, pro-cyanidin B2 and gallic acid, was incorporated into phospholipid vesicles tailored for intestinal delivery. To improve their performances, vesicles were enriched with gelatine or a maltodextrin (Nutriose (R)), or their com-bination (gelatine-liposomes, nutriosomes and gelatine-nutriosomes). The small (-147 nm) and negatively charged (--50mV) vesicles were stable at different pH values mimicking saliva (6.75), gastric (1.20) and intestinal (7.00) environments. Vesicles effectively protected intestinal cells (Caco-2) from the oxidative stress and promoted the biofilm formation by probiotic bacteria. A preliminary evaluation of the vesicle feasibility at industrial levels was also performed, analysing the economic and energetic costs needed for their production.
JTD Keywords: Adhesion, Antioxidant activity, Caco-2 cells, Dextrin, Grape pomace extract, Lactobacillus-reuteri, Manufacturing costs, Oxidative stress, Ph, Phospholipid vesicles, Polyphenols, Probiotic bacteria, Protein
Allaw, M., Manca, M. L., Caddeo, C., Recio, M. C., Pérez-Brocal, V., Moya, A., Fernàndez-Busquets, X., Manconi, M., (2020). Advanced strategy to exploit wine-making waste by manufacturing antioxidant and prebiotic fibre-enriched vesicles for intestinal health Colloids and Surfaces B: Biointerfaces 193, 111146
Grape extract-loaded fibre-enriched vesicles, nutriosomes, were prepared by combining antioxidant extracts obtained from grape pomaces and a prebiotic, soluble fibre (Nutriose®FM06). The nutriosomes were small in size (from ∼140 to 260 nm), homogeneous (polydispersity index < 0.2) and highly negative (∼ −79 mV). The vesicles were highly stable during 12 months of storage at 25 °C. When diluted with warmed (37 °C) acidic medium (pH 1.2) of high ionic strength, the vesicles only displayed an increase of the mean diameter and a low release of the extract, which were dependent on Nutriose concentration. The formulations were highly biocompatible and able to protect intestinal cells (Caco-2) from oxidative stress damage. In vivo results underlined that the composition of mouse microbiota was not affected by the vesicular formulations. Overall results support the potential application of grape nutriosomes as an alternative strategy for the protection of the intestinal tract.
JTD Keywords: Antioxidant activity, Grape pomace, Gut microbiota, In vivo studies, Intestinal cells, Nutriosomes, Phospholipid vesicles, Prebiotic activity