DONATE

Publications

by Keyword: Insulin delivery

Munoz-Galan, Helena, Enshaei, Hamidreza, Silva, Joao C, Esteves, Teresa, Ferreira, Frederico Castelo, Casanovas, Jordi, Worch, Joshua C, Dove, Andrew P, Aleman, Carlos, Perez-Madrigal, Maria M, (2024). Electroresponsive Thiol-Yne Click-Hydrogels for Insulin Smart Delivery: Tackling Sustained Release and Leakage Control Acs Applied Polymer Materials 6, 8093-8104

Diabetes is a metabolic disorder caused by the body's inability to produce or use insulin. Considering the figures projected by the World Health Organization, research on insulin therapy is crucial. Hence, we present a soft biointerface based on a thiol-yne poly(ethylene glycol) (PEG) click-hydrogel as an advanced treatment option to administrate insulin. Most importantly, the device is rendered electroactive by incorporating biocompatible poly(3,4-ethylenedioxythiophene) nanoparticles (PEDOT NPs) as conductive moieties to precisely control the release of insulin over an extended period through electrochemical stimulation (ES). The device has been carefully optimized on account of: (i) the main interactions established between PEDOT- and PEG-based moieties, which have been studied by density functional theory calculations, and reveal the choice of 4-arm PEG precursors as most suitable cross-linkers; and (ii) the concentration of PEDOT NPs in the device, which has been determined considering minimal interference with the gelation process, as well as the resulting morphological, mechanical, electrochemical, and cytocompatible properties of the PEG-based click-hydrogels. Finally, the management over insulin delivery through ES is verified in vitro, with released insulin being detected by high-performance liquid chromatography. Overall, our hydrogel-based device establishes a method for controlled insulin delivery with the potential for translation to other relevant bioelectronic applications.

JTD Keywords: Bioelectronic, Chemistry, Disease, Electroactive click-hydrogel, Energ, Insulin delivery, Pedot nanoparticles, Thiol-yne nucleophilicaddition