DONATE

Publications

by Keyword: Bioelectronic

Pankratov D, Hidalgo Martinez S, Karman C, Gerzhik A, Gomila G, Trashin S, Boschker HTS, Geelhoed JS, Mayer D, De Wael K, JR Meysman F, (2024). The organo-metal-like nature of long-range conduction in cable bacteria Bioelectrochemistry 157, 108675

Cable bacteria are filamentous, multicellular microorganisms that display an exceptional form of biological electron transport across centimeter-scale distances. Currents are guided through a network of nickel-containing protein fibers within the cell envelope. Still, the mechanism of long-range conduction remains unresolved. Here, we characterize the conductance of the fiber network under dry and wet, physiologically relevant, conditions. Our data reveal that the fiber conductivity is high (median value: 27 S cm−1; range: 2 to 564 S cm−1), does not show any redox signature, has a low thermal activation energy (Ea = 69 ± 23 meV), and is not affected by humidity or the presence of ions. These features set the nickel-based conduction mechanism in cable bacteria apart from other known forms of biological electron transport. As such, conduction resembles that of an organic semi-metal with a high charge carrier density. Our observation that biochemistry can synthesize an organo-metal-like structure opens the way for novel bio-based electronic technologies. © 2024 The Authors

JTD Keywords: 'current, Activation energy, Bacteria, Bioelectronic, Bioelectronics, Cable bacteria, Cables, Centimeter-scale, Electrochemical impedance spectroscopy, Electrochemical-impedance spectroscopies, Electron transport, Electron transport properties, Long-distance electron transport, Nickel, Nickel containing, Protein conductivity, Protein fibers, Proteins


Kyndiah, A, Checa, M, Leonardi, F, Millan-Solsona, R, Di Muzio, M, Tanwar, S, Fumagalli, L, Mas-Torrent, M, Gomila, G, (2021). Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyte-Gated Organic Field-Effect Transistor under Operation Advanced Functional Materials 31, 2008032

© 2020 Wiley-VCH GmbH Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte-gated organic field-effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment. Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non-uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label-free biosensing.

JTD Keywords: Atomic force microscopy, Bioelectronic devices, Electrolyte gated organic field effect transistors, In-liquid scanning dielectric microscopy, Organic semiconducting blend


Kyndiah, A., Leonardi, F., Tarantino, C., Cramer, T., Millan-Solsona, R., Garreta, E., Montserrat, N., Mas-Torrent, M., Gomila, G., (2020). Bioelectronic recordings of cardiomyocytes with accumulation mode electrolyte gated organic field effect transistors Biosensors and Bioelectronics 150, 111844

Organic electronic materials offer an untapped potential for novel tools for low-invasive electrophysiological recording and stimulation devices. Such materials combine semiconducting properties with tailored surface chemistry, elastic mechanical properties and chemical stability in water. In this work, we investigate solution processed Electrolyte Gated Organic Field Effect Transistors (EGOFETs) based on a small molecule semiconductor. We demonstrate that EGOFETs based on a blend of soluble organic semiconductor 2,8-Difluoro-5,11-bis(triethylsilylethynyl)anthradithiophene (diF-TES-ADT) combined with an insulating polymer show excellent sensitivity and long-term recording under electrophysiological applications. Our devices can stably record the extracellular potential of human pluripotent stem cell derived cardiomyocyte cells (hPSCs-CMs) for several weeks. In addition, cytotoxicity tests of pharmaceutical drugs, such as Norepinephrine and Verapamil was achieved with excellent sensitivity. This work demonstrates that organic transistors based on organic blends are excellent bioelectronics transducer for extracellular electrical recording of excitable cells and tissues thus providing a valid alternative to electrochemical transistors.

JTD Keywords: Bioelectronics, Cardiac cells, Organic electronics, Organic field effect transistors, Organic semiconducting blend


Samitier, Josep, Correia, A., (2019). Biomimetic Nanotechnology for Biomedical Applications (NanoBio&Med 2018) Biomimetics MDPI

Emerging nanobiotechnologies can offer solutions to the current and future challenges in medicine. By covering topics from regenerative medicine, tissue engineering, drug delivery, bionanofabrication, and molecular biorecognition, this Special Issue aims to provide an update on the trends in nanomedicine and drug delivery using biomimetic approaches, and the development of novel biologically inspired devices for the safe and effective diagnosis, prevention, and treatment of disease.

JTD Keywords: Bioinspired nanotechnologies, Bionanofabrication, Bio-nano measurement and microscopy, Nanomaterials for biological and medical applications, Nanoassemblies, Nanostructured surfaces, Drug delivery, Nanobioelectronics, Integrated systems/nanobiosensors, Nanotoxicology, Graphene-based applications


Pérez, Judit, Dulay, Samuel, Mir, M., Samitier, Josep, (2018). Molecular architecture for DNA wiring Biosensors and Bioelectronics 121, 54-61

Detection of the hybridisation events is of great importance in many different biotechnology applications such as diagnosis, computing, molecular bioelectronics, and among others. However, one important drawback is the low current of some redox reporters that limits their application. This paper demonstrates the powerful features of molecular wires, in particular the case of S-[4-[2-[4-(2-Phenylethynyl)phenyl]ethynyl]phenyl] thiol molecule and the key role that play the nanometric design of the capture probe linkers to achieve an efficient couple of the DNA complementary ferrocene label with the molecular wire for an effective electron transfer in co-immobilised self-assembled monolayers (SAMs) for DNA hybridisation detection. In this article, the length of the linker capture probe was studied for electron transfer enhancement from the ferrocene-motifs of immobilised molecules towards the electrode surface to obtain higher kinetics in the presence of thiolated molecular wires. The use of the right couple of capture probe linker and molecular wire has found to be beneficial as it helps to amplify eightfold the signal obtained.

JTD Keywords: DNA hybridisation, Bioelectronics, Electron transfer rate constant, Molecular wires, Electrochemistry, Ferrocene, Biosensor


Zaffino, R. L., Mir, M., Samitier, J., (2017). Oligonucleotide probes functionalization of nanogap electrodes Electrophoresis , 38, (21), 2712-2720

Nanogap electrodes have attracted a lot of consideration as promising platform for molecular electronic and biomolecules detection. This is mainly for their higher aspect ratio, and because their electrical properties are easily accessed by current-voltage measurements. Nevertheless, application of standard current-voltages measurements used to characterize nanogap response, and/or to modify specific nanogap electrodes properties, represents an issue. Since the strength of electrical fields in nanoscaled devices can reach high values, even at low voltages. Here, we analyzed the effects induced by different methods of surface modification of nanogap electrodes, in test-voltage application, employed for the electrical detection of a desoxyribonucleic acid (DNA) target. Nanogap electrodes were functionalized with two antisymmetric oligo-probes designed to have 20 terminal bases complementary to the edges of the target, which after hybridization bridges the nanogap, closing the electrical circuit. Two methods of functionalization were studied for this purpose; a random self-assembling of a mixture of the two oligo-probes (OPs) used in the platform, and a selective method that controls the position of each OP at selected side of nanogap electrodes. We used for this aim, the electrophoretic effect induced on negatively charged probes by the application of an external direct current voltage. The results obtained with both functionalization methods where characterized and compared in terms of electrode surface covering, calculated by using voltammetry analysis. Moreover, we contrasted the electrical detection of a DNA target in the nanogap platform either in site-selective and in randomly assembled nanogap. According to our results, a denser, although not selective surface functionalization, is advantageous for such kind of applications.

JTD Keywords: Biosensor bioelectronics, DNA electrophoresis, Nanogap electrodes, Self-assembled monolayers, Site-selective deposition


Sanmartí-Espinal, M., Galve, R., Iavicoli, P., Persuy, M. A., Pajot-Augy, E., Marco, M. P., Samitier, J., (2016). Immunochemical strategy for quantification of G-coupled olfactory receptor proteins on natural nanovesicles Colloids and Surfaces B: Biointerfaces 139, 269-276

Cell membrane proteins are involved in a variety of biochemical pathways and therefore constitute important targets for therapy and development of new drugs. Bioanalytical platforms and binding assays using these membrane protein receptors for drug screening or diagnostic require the construction of well-characterized liposome and lipid bilayer arrays that act as support to prevent protein denaturation during biochip processing. Quantification of the protein receptors in the lipid membrane arrays is a key issue in order to produce reproducible and well-characterized chips. Herein, we report a novel immunochemical analytical approach for the quantification of membrane proteins (i.e., G-protein-coupled receptor, GPCR) in nanovesicles (NVs). The procedure allows direct determination of tagged receptors (i.e., c-myc tag) without any previous protein purification or extraction steps. The immunochemical method is based on a microplate ELISA format and quantifies this tag on proteins embedded in NVs with detectability in the picomolar range, using protein bioconjugates as reference standards. The applicability of the method is demonstrated through the quantification of the c-myc-olfactory receptor (OR, c-myc-OR1740) in the cell membrane NVs. The reported method opens the possibility to develop well-characterized drug-screening platforms based on G-coupled proteins embedded on membranes.

JTD Keywords: Bioelectronic nose, Competitive ELISA, G-protein-coupled receptors quantification, Natural vesicles, Olfactory receptors, Transmembrane proteins


Artés, Juan M., López-Martínez, Montserrat, Díez-Pérez, Ismael, Sanz, Fausto, Gorostiza, Pau, (2014). Conductance switching in single wired redox proteins Small 10, (13), 2537-2541

Switching events in the current flowing through individual redox proteins, (azurin) spontaneously wired between two electrodes, are studied using an electrochemical scanning tunneling microscope (ECSTM). These switching events in the current–time trace are characterized using conductance histograms, and reflect the intrinsic redox thermodynamic dispersion in the azurin population. This conductance switching may pose limitations to miniaturizing redox protein-based devices.

JTD Keywords: Bioelectronics, Protein transistors, Molecular junctions, Switches, STM


Colomer-Farrarons, Jordi , Miribel-Català, Pedro Luís, Samitier, Josep , (2011). Low-voltage µpower CMOS subcutaneous biomedical implantable device for true/false applications Biomedical Engineering IASTED International Conference Biomedical Engineering (Biomed 2011) (ed. Baumgartner, C.), ACTA Press (Innsbruck, Austria) Biomedical Engineering, 424-428

A ±1.2V / 350μW integrated front-end architecture for a true/false in-vivo subcutaneous detection device is presented. The detection is focused on using three electrodes amperometric sensors. The powering and AM transcutaneous communication are based on an inductively coupled link working at 13.56 MHz. A prototype device (5.5 mm x 29.5 mm) has been implemented and fully validated.

JTD Keywords: Implantable Device, Front-End architecture, Bioelectronics, Microelectronics Design, Biosensors


Sanmarti, M., Iavicoli, P., Pajot-Augy, E., Gomila, G., Samitier, J., (2010). Human olfactory receptors immobilization on a mixed self assembled monolayer for the development of a bioelectronic nose Procedia Engineering (EUROSENSOR XXIV CONFERENCE) 24th Eurosensor Conference (ed. Jakoby, B., Vellekoop, M.J.), Elsevier Science (Linz, Austria) 5, 786-789

The present work focuses on the development of an immunosensing surface to build a portable olfactory system for the detection of complex mixture of odorants. Homogeneous cell derived vesicles expressing the olfactory receptors were produced and immobilized with efficiency onto a gold substrate through an optimized surface functionalization method.

JTD Keywords: Bioelectronic noses, Biosensors, Nanoproteoliposomes, Nanosomes, Olfactory receptors, SAMs