by Keyword: Intestinal stem-cell
Elosegui-Artola, A, Gupta, A, Najibi, AJ, Seo, BR, Garry, R, Tringides, CM, de Lazaro, I, Darnell, M, Guo, W, Zhou, Q, Weitze, DA, Mahadevan, L, Mooney, DJ, (2023). Matrix viscoelasticity controls spatiotemporal tissue organization Nature Materials 22, 117-+
Biomolecular and physical cues of the extracellular matrix environment regulate collective cell dynamics and tissue patterning. Nonetheless, how the viscoelastic properties of the matrix regulate collective cell spatial and temporal organization is not fully understood. Here we show that the passive viscoelastic properties of the matrix encapsulating a spheroidal tissue of breast epithelial cells guide tissue proliferation in space and in time. Matrix viscoelasticity prompts symmetry breaking of the spheroid, leading to the formation of invading finger-like protrusions, YAP nuclear translocation and epithelial-to-mesenchymal transition both in vitro and in vivo in a Arp2/3-complex-dependent manner. Computational modelling of these observations allows us to establish a phase diagram relating morphological stability with matrix viscoelasticity, tissue viscosity, cell motility and cell division rate, which is experimentally validated by biochemical assays and in vitro experiments with an intestinal organoid. Altogether, this work highlights the role of stress relaxation mechanisms in tissue growth dynamics, a fundamental process in morphogenesis and oncogenesis.© 2022. The Author(s), under exclusive licence to Springer Nature Limited.
JTD Keywords: in-vitro, migration, morphogenesis, stiffness, Intestinal stem-cell
Berishvili, E, Casiraghi, F, Amarelli, C, Scholz, H, Piemonti, L, Berney, T, Montserrat, N, (2021). Mini-organs forum: how to advance organoid technology to organ transplant community Transplant International 34, 1588-1593
The generation of human mini-organs, the so-called organoids, is one of the biggest scientific advances in regenerative medicine. This technology exploits traditional three-dimensional culture techniques that support cell-autonomous self-organization responses of stem cells to derive micrometer to millimeter size versions of human organs. The convergence of the organoid technology with organ transplantation is still in its infancy but this alliance is expected to open new venues to change the way we conduct both transplant and organoid research. In this Forum we provide a summary on early achievements facilitating organoid derivation and culture. We further discuss on early advances of organoid transplantation also offering a comprehensive overview of current limitations and challenges to instruct organoid maturation. We expect that this Forum sets the ground for initial discussions between stem cell biologists, bioengineers, and the transplant community to better direct organoid basic research to advance the organ transplantation field.
JTD Keywords: in-vitro, matrix, mice, organoids, regenerative medicine, vivo, Intestinal stem-cell, Organoids, Regenerative medicine