DONATE

Publications

by Keyword: Laccase

Hodásová, L, Morena, AG, Tzanov, T, Fargas, G, Llanes, L, Alemán, C, Armelin, E, (2022). 3D-Printed Polymer-Infiltrated Ceramic Network with Antibacterial Biobased Silver Nanoparticles Acs Applied Bio Materials 5, 4803-4813

This work aimed at the antimicrobial functionalization of 3D-printed polymer-infiltrated biomimetic ceramic networks (PICN). The anti-microbial properties of the polymer-ceramic composites were achieved by coating them with human-and environmentally safe silver nanoparticles trapped in a phenolated lignin matrix (Ag@PL NPs). Lignin was enzymatically phenolated and used as a biobased reducing agent to obtain stable Ag@PL NPs, which were then formulated in a silane (gamma-MPS) solution and deposited to the PICN surface. The presence of the NPs and their proper attachment to the surface were analyzed with spectroscopic methods (FTIR and Raman) and X-ray photoelectron spectroscopy (XPS). Homogeneous distribution of 13.4 +/- 3.2 nm NPs was observed in the transmission electron microscopy (TEM) images. The functionalized samples were tested against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa) bacteria, validating their antimicrobial efficiency in 24 h. The bacterial reduction of S. aureus was 90% in comparison with the pristine surface of PICN. To confirm that the Ag-functionalized PICN scaffold is a safe material to be used in the biomedical field, its biocompatibility was demonstrated with human fibroblast (BJ-5ta) and keratinocyte (HaCaT) cells, which was higher than 80% in both cell lines.

JTD Keywords: accuracy, antibacterial activity, disease, facile, laccase enzyme, lignin, polyacrylates, polymer-infiltrated ceramic network, silver nanoparticles, zirconia, Mechanical-properties, Mechanical-properties,zirconia,lignin,accuracy,disease,facil, Polymer-infiltrated ceramic network, Polymer-infiltrated ceramic network,polyacrylates,lignin,laccase enzyme,silver nanoparticles,antibacterial activit, Silver nanoparticles


Apriceno, A, Silvestro, I, Girelli, A, Francolini, I, Pietrelli, L, Piozzi, A, (2021). Preparation and characterization of chitosan-coated manganese-ferrite nanoparticles conjugated with laccase for environmental bioremediation Polymers 13, 1453

Bioremediation with immobilized enzymes has several advantages, such as the enhancement of selectivity, activity, and stability of biocatalysts, as well as enzyme reusability. Laccase has proven to be a good candidate for the removal of a wide range of contaminants. In this study, naked or modified MnFe O magnetic nanoparticles (MNPs) were used as supports for the immobilization of laccase from Trametes versicolor. To increase enzyme loading and stability, MNPs were coated with chitosan both after the MNP synthesis (MNPs-CS) and during their formation (MNPs-CS ). SEM analysis showed different sizes for the two coated systems, 20 nm and 10 nm for MNPs-CS and MNPs-CS , respectively. After covalent immobilization of laccase by glutaraldehyde, the MNPs-CS -lac and MNPs-CS-lac systems showed a good resistance to temperature denaturation and storage stability. The most promising system for use in repeated batches was MNPs-CS -lac, which degraded about 80% of diclofenac compared to 70% of the free enzyme. The obtained results demonstrated that the MnFe O -CS system could be an excellent candidate for the removal of contaminants. 2 4 in situ in situ in situ in situ 2 4 in situ

JTD Keywords: bioremediation, chitosan, diclofenac, diclofenac removal, immobilized enzyme, laccase, magnetic nanoparticles, phase, removal, supports, Bioremediation, Chitosan, Diclofenac removal, Enzyme immobilization, Immobilized enzyme, Laccase, Magnetic nanoparticles