DONATE

Publications

by Keyword: supports

Razavi, SA, Fargas, G, Vilella, T, Serrano, I, Laguna-Bercero, MA, Llanes, L, Rodríguez, D, Ginebra, MP, Llorca, J, Morales, M, (2025). Direct Ink Writing of cobalt-zirconia monoliths for catalytic applications: A novel single-step fabrication approach Journal Of The European Ceramic Society 45, 117137

Additive manufacturing technologies are revolutionizing the fabrication of ceramic catalysts through hierarchical design to enhance catalytic performance and simultaneously improving the efficiency of the manufacturing process by decreasing the initial investment and production steps. This work proposes a fabrication process of cobalt-zirconia monoliths based on Direct-Ink Writing of Co-enriched hydrogel-based ceramic inks, and the debinding and sintering at 600 degrees C in a single thermal treatment. The effect of Co precursor amount (3.0 -7.0 wt% Co) on the rheological properties of inks and the catalytic performance in ethanol steam reforming is investigated. The results reveal the successful incorporation of Co into rectilinear monoliths with 50% infill, obtaining strongly Co-rich surfaces. The remarkable catalytic performance of the 5.0 wt% Co monolith at 300-600 degrees C confirms the feasibility of this novel single-step approach, reaching an appropriate balance between catalytic activity and printability. This outcome may represent a push towards the fabrication of fully 3D-printed monolithic catalysts.

JTD Keywords: Additive manufacturing, Catalyst ethanol steam reforming, Cleanup, Co, Combustion, Direct-ink writing, Hydrogen productio, Ionically conductive supports, Nanoparticles, Oxidation, Rama, Reactors, Sulfur, Zirconia


Apriceno, A, Silvestro, I, Girelli, A, Francolini, I, Pietrelli, L, Piozzi, A, (2021). Preparation and characterization of chitosan-coated manganese-ferrite nanoparticles conjugated with laccase for environmental bioremediation Polymers 13, 1453

Bioremediation with immobilized enzymes has several advantages, such as the enhancement of selectivity, activity, and stability of biocatalysts, as well as enzyme reusability. Laccase has proven to be a good candidate for the removal of a wide range of contaminants. In this study, naked or modified MnFe O magnetic nanoparticles (MNPs) were used as supports for the immobilization of laccase from Trametes versicolor. To increase enzyme loading and stability, MNPs were coated with chitosan both after the MNP synthesis (MNPs-CS) and during their formation (MNPs-CS ). SEM analysis showed different sizes for the two coated systems, 20 nm and 10 nm for MNPs-CS and MNPs-CS , respectively. After covalent immobilization of laccase by glutaraldehyde, the MNPs-CS -lac and MNPs-CS-lac systems showed a good resistance to temperature denaturation and storage stability. The most promising system for use in repeated batches was MNPs-CS -lac, which degraded about 80% of diclofenac compared to 70% of the free enzyme. The obtained results demonstrated that the MnFe O -CS system could be an excellent candidate for the removal of contaminants. 2 4 in situ in situ in situ in situ 2 4 in situ

JTD Keywords: bioremediation, chitosan, diclofenac, diclofenac removal, immobilized enzyme, laccase, magnetic nanoparticles, phase, removal, supports, Bioremediation, Chitosan, Diclofenac removal, Enzyme immobilization, Immobilized enzyme, Laccase, Magnetic nanoparticles