DONATE

Publications

by Keyword: Lactobacillus-reuteri

Perra, M, Manca, ML, Tuberoso, CIG, Caddeo, C, Marongiu, F, Peris, JE, Orru, G, Ibba, A, Fernandez-Busquets, X, Fattouch, S, Bacchetta, G, Manconi, M, (2022). A green and cost-effective approach for the efficient conversion of grape byproducts into innovative delivery systems tailored to ensure intestinal protection and gut microbiota fortification Innovative Food Science & Emerging Technologies 80, 103103

According to circular economy, wine-making by-products represent a fascinating biomass, which can be used for the sustainable exploitation of polyphenols and the development of new nanotechnological health-promoting products. In this study, polyphenols contained in the grape pomace were extracted by maceration with ethanol in an easy and low dissipative way. The obtained extract, rich in malvidin-3-glucoside, quercetin, pro-cyanidin B2 and gallic acid, was incorporated into phospholipid vesicles tailored for intestinal delivery. To improve their performances, vesicles were enriched with gelatine or a maltodextrin (Nutriose (R)), or their com-bination (gelatine-liposomes, nutriosomes and gelatine-nutriosomes). The small (-147 nm) and negatively charged (--50mV) vesicles were stable at different pH values mimicking saliva (6.75), gastric (1.20) and intestinal (7.00) environments. Vesicles effectively protected intestinal cells (Caco-2) from the oxidative stress and promoted the biofilm formation by probiotic bacteria. A preliminary evaluation of the vesicle feasibility at industrial levels was also performed, analysing the economic and energetic costs needed for their production.

JTD Keywords: Adhesion, Antioxidant activity, Caco-2 cells, Dextrin, Grape pomace extract, Lactobacillus-reuteri, Manufacturing costs, Oxidative stress, Ph, Phospholipid vesicles, Polyphenols, Probiotic bacteria, Protein